|
|
ABSTRACTS OF ARTICLES OF THE JOURNAL "INFORMATION TECHNOLOGIES".
No. 11. Vol. 31. 2025
DOI: 10.17587/it.31.578-586
I. S. Sergeev, Senior Engineer1, PhD Student2,
1Piping Systems Research & Engineering Co "TRUBOPROVOD" PSRE Co., Moscow, 111141, Russian Federation, 2Moscow Aviation Institute (NRU), Moscow, 125993, Russian Federation
The Combined Method for Audio Stream Optimization Based on Fragmentation and Minimal Information Content Assessment
Received on 10.05.2025
Accepted on 25.05.2025
This paper presents a method for optimizing segments of an audio stream with minimal informational content (such as silence, speech pauses, and other weakly informative sounds) based on fragmentation and structural analysis of the signal. The method involves preliminary processing of audio data by dividing the signal into fragments and assigning each a descriptor containing information about quantitative and qualitative characteristics (e.g., amplitude fluctuations and the assumed level of informational content). This approach enables automatic identification of low-informative segments, which are replaced with compact descriptors, while informative fragments are preserved unchanged. The proposed optimization is complemented by lossless compression algorithms, including dictionary-based coding (Lempel—Ziv—Welch algorithm) and entropy-based methods (Huffman or arithmetic coding), allowing a significant reduction in audio data size while retaining the ability to reconstruct the original structure. The experimental results are compared with the performance of widely used lossy compression formats (MP3 and AAC).
Keywords: audio stream optimization, minimal informational content, signal fragmentation, dictionary-based coding, entropy coding, audio compression
P. 578-586
Full text on eLIBRARY
References
- Brandenburg K. MP3 and AAC Explained, Fraunhofer IIS, 1999, 12 p., available at: https://www.iis.fraunhofer.de/content/dam/iis/de/doc/ame/conference/AES-17-Conference_mp3-and-AAC-explained_AES17.pdf
- Balakirev N. E., Fadeev M. M., Rodionov V. S. Qualitative approach in extracting the information content of wave data, Trudy MAI, 2024, no. 136, available at: https://trudymai.ru/eng/published.php?ID=180683
- Solonina A. I., Ulakhovich D. A., Arbuzov S. M., So-lovyeva E. B. Fundamentals of Digital Signal Processing: Lecture Course. St. Petersburg, BHV-Petersburg, 2005, pp. 7—17.
- Chizhov I. I., Balabanova T. N. Compression of Audio Data Based on Psychoacoustic Principles of Human Sound Perception, Modern Aspects of Information Technologies, 2021, no. 2 (30), pp. 106—110, DOI: 10.17308/sait/1995-5499/2024/3/127-137
- 5. Balakirev N. E., Nguen Kh.Z., Malkov M. A., Fadeev M. M. Programmnye produkty i sistemy, 2018, vol. 31, no. 4, pp. 768—776.
- Fadeev M. M., Balakirev N. E., Rodionov V. S., Sergeev I. S., Umryukhin E. A. Materialy XXIV Mezhdunarodnoi konferentsii "Informatika: problemy, metodologiya, tekhnologii ", Voronezh, Izd. dom VGU, 2024, pp. 807—813.
- Sklyar B. Digital Communications: Fundamentals and Applications, Moscow, Williams, 2003, 1104 p.
- Welch T. A. A Technique for High-Performance Data Compression, IEEE Computer, 1984, vol. 17, no. 6, pp. 8—19.
- Witten I. H., Neal R. M., Cleary J. G. Arithmetic coding for data compression, Communications of the ACM, June 1987, vol. 30, no. 6, pp. 520—540.
- Sergeev I. S., Balakirev N. E. Comparison of Audio Compression Algorithms: Huffman vs. Arithmetic Coding, Naucosfera, 2022, no. 8 (2), pp. 31—35.
To the contents |
|