main| new issue| archive| editorial board| for the authors| publishing house|
Πσρρκθι
Main page
New issue
Archive of articles
Editorial board
For the authors
Publishing house

 

 


ABSTRACTS OF ARTICLES OF THE JOURNAL "INFORMATION TECHNOLOGIES".
No. 1. Vol. 31. 2025

DOI: 10.17587/it.31.24-34

O. S. Amosov, D. Sc., Prof., Principal Researcher, S. G. Amosova, PhD, Senior Researcher,
V. A. Trapeznikov Institute of Control Sciences of RAS, Moscow, Russian Federation

Intelligent Technologies for Joint Navigation and Functioning of Mobile Objects in Different Physical Environments

Scientific solutions for a group of heterogeneous unmanned vehicles functioning in different physical environments in a coordinated manner are presented. The following are proposed for this group: synthetic algorithms for complexing information from different measurement systems; neural network models of Earth geophysical fields for navigation; the method of joint functioning based on a frame model and an expert decision-making system.
Keywords: unmanned vehicle, complexing, geophysical field, neural network, fuzzy system, frame, expert system, multi-agent system

Acknowledgments: The research was supported by RSF, grant no. 24-29-00671, https://rscf.ru/project/24-29-00671/.

P. 24-34

References

  1. Beloglazov I. N., Dzhandzhgava G. I., Chigin G. P. Fundamentals of Navigation Along Geophysical Fields, Moscow, Nauka. Glavnaya Redaktsiya Fiziko-Matematicheskoy Literatury, 1985, 328 p. (in Russian).
  2. Stepanov O. A., Toropov A. B. Nonlinear Filtering for Map-aided Navigation. Part 1. An Overview of Algorithms, Gyroscopy and Navigation, 2015, vol. 6, no. 4, pp. 324—337.
  3. Stepanov O. A., Toropov A. B. Nonlinear Filtering for Map-aided Navigation Part 2. Trends in the Algorithm Development, Gyroscopy and Navigation, 2016, vol. 7, pp. 82—89.
  4. Haykin S. Kalman Filtering and Neural Networks, N. Y., John Wiley&Sons, Inc., 2001.
  5. Stepanov O. A. Fundamentals of Estimation Theory with Applications to Navigation Information Processing Problems. Part 1. Introduction to Estimation Theory, Saint Petersburg, State Research Center of the Russian Federation JSC Concern Central Research Institute Elektropribor, 2017, 509 p. (in Russian).
  6. Stepanov O. A. Fundamentals of Estimation Theory with Applications to Navigation Information Processing Problems. Part 2. Introduction to Filtration Theory, Saint Petersburg, State Research Center of the Russian Federation JSC Concern Central Research Institute Elektropribor, 2017, 428 p. (in Russian).
  7. Stepanov O. A, Amosov O. S., Toropov A. V. Comparison of Kalman-type Algorithms in Nonlinear Navigation Problems for Autonomous Vehicles, IFAC Proceedings Volumes (IFAC-PapersOnline), 2007, vol. 6, pt. 1, pp. 493—498.
  8. Sierociuk D., Macias M. Triple Estimation of Fractional Variable Order, Parameters, and State Variables Based on the Unscented Fractional Order Kalman Filter, Sensors, 2021, vol. 21, pp. 8159.
  9. Sierociuk D., Dzielinski A. Fractional Kalman Filter Algorithm for the States, Parameters and Order of Fractional System Estimation, Intern. J. of Applied Mathematics and Computer Science, 2006, vol. 16, iss. 1, pp. 129—149.
  10. Xue G., Xu Y., Guo J., Zhao W. The Fractional Kalman Filter-Based Asynchronous Multirate Sensor Information Fusion, Hindawi Complexity, Dec. 2018, vol. 2018, article ID 1450353, 10 p.
  11. Cui Ch., Zhang L., Yan G., Sun X. Track Fusion Fractional Kalman Filter, 41st Chinese Control Conference (CCC), Hefei, China, 2022, no. 22507536, 6 p.
  12. Tripathi R. P., Singh A. K., Gangwar P. Innovation-based Fractional Order Adaptive Kalman Filter, J. Electrical Engineering, 2020, vol. 71, no. 1, pp. 60—64.
  13. Stepanov O. A., Amosov O. S. Bayesian Estimation Using Neural Network, Aviakosmicheskoye Priborostroyeniye, 2004, no. 6, pp. 46—55 (in Russian).
  14. Stepanov O. A., Amosov O. S. Optimal Linear Filtering Using a Neural Network, Giroskopiya i Navigatsiya, 2004, no. 3 (46), pp. 14—29 (in Russian).
  15. Stepanov O. A., Amosov O. S. The Comparison of the Monte-Carlo Method and Neural Networks Algorithms in Nonlinear Estimation Problems, 9th IFAC Workshop "Adaptation and Learning in Control and Signal Processing", ALCOSP'2007. (IFAC-PapersOnline), Saint Petersburg, 2007, vol. 9, part 1, pp. 392—397.
  16. Amosov O. S. Fuzzy Logic Systems for Filtering Markov Sequences, Informatsionnyye Tekhnologii, 2004, no. 11, pp. 16—22 (in Russian).
  17. Amosov O. S., Baena S. G. Decomposition Synthetic Approach for Optimum Nonlinear Estimation, IFAC-PapersOnLine, 2015, vol. 48, no. 11, pp. 819—824.
  18. Amosov O. S., Amosova S. G. Machine Learning with Reinforcement for Optimal and Adaptive Estimation Problems in Navigation Applications, Proceedings of the 29th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS-2022), Saint Petersburg, IEEE, 2022.
  19. Kotenko P. S., Zakiryanov A. G. On-board Computer Systems for Navigation and Aircraft Navigation: a Tutorial, Ufa, UGATU, 2019 (in Russian).
  20. Dzhandzhgava G. I., Gerasimov G. I., Avgustov L. I. Navigation and Guidance by Spatial Geophysical Fields, Izvestiya YUFU. Tekhnicheskiye Nauki, 2013, no. 3 (140), pp. 74—84 (in Russian).
  21. General Bathymetric Chart of the Oceans, available at: https://www.gebco.net/(access date: 04.09.2024).
  22. European Space Agency, available at: http://eo-virtual-archive1.esa.int (access date: 04.09.2024).
  23. Enhanced Magnetic Model, available at: https://www.ngdc.noaa.gov/geomag/EMM/ (access date: 04.09.2024).
  24. Stepanov O. A., Vasiliev V. A., Toropov A. B. Map-Aided Navigation Algorithms Taking into Account the Variability of Position Errors of the Corrected Navigation System, 29th Saint Petersburg International Conference on Integrated Navigation Systems, ICINS, 2022.
  25. Chame H. F., dos Santos M. M., Botelho S. S. D. Neural Network for Black-Box Fusion of Underwater Robot Localization Under Unmodeled Noise, Robotics and Autonomous Systems, Dec. 2018, vol. 110, pp. 57—72.
  26. Ali U., Muhammad W., Irshad M. J., Manzoor S. Multi-Sensor Fusion for Underwater Robot Self-Localization Using PC/BC-DIM Neural Network, Sensor Review, 2021, vol. 41, no. 5, pp. 449—457.
  27. Li Z. Y., Yu H. P., Shen T. Sh., Li Zh. H. Segmented Matching Method of Multi-Geophysics Field SLAM Data Based on LSTM, 2020 3rd IEEE International Conference on Unmanned Systems (ICUS), 2020, 6 p.
  28. Bykova V. S., Martynova L. A., Mashoshin A. I., Pash-kevich I. V. Algorithms for the Functioning of a Multi-agent Control System for an Autonomous Unmanned Underwater Vehicle, Materialy Konferentsii "Informatsionnyye Tekhnologii v Upravlenii", 2020, pp. 216—220 (in Russian).
  29. Mashoshin A. I., Skobelev P. O. Application of Multiagent Technologies for Controlling a Group of Autonomous Unmanned Underwater Vehicles, Izvestiya YUFU. Tekhnicheskiye Nauki, 2016, no. 1 (174), pp. 45—59 (in Russian).
  30. Karur K., Sharma N., Dharmatti Ch., Siegel J. E. Survey of Path Planning Algorithms for Mobile Robots, Vehicles, 2021, vol. 3, no. 3, pp. 448—468.
  31. Ajeil F. H., Ibraheem I. K., Azar A. T., Humaidi A. J. GridBased Mobile Robot Path Planning Using Aging-Based Ant Colony Optimization Algorithm in Static and Dynamic Environments, Sensors, 2020, vol. 20, no. 7, art. no. 1880.
  32. Kolmogorov A. N. On the Representation of Continuous Functions of Several Variables in the Form of Superpositions of Continuous Functions of one Variable and Addition, Dokl. AN SSSR, 1957, vol. 114, no. 5, pp. 953—956 (in Russian).
  33. Cybenko G. Approximation by Superpositions of a Sigmoidal Function, Mathematical Control Signals Systems, 1989, vol. 2, pp. 303—314.
  34. Funahashi K.-I. On the Approximate Realization of Continuous Mappings by Neural Networks, Neural Networks, 1989, vol. 2, iss. 3, pp. 183—192.
  35. Hornick K., Stinchcombe M., White H. Multilayer Feedforward Networks are Universal Approximators, Neural Networks, 1989, vol. 2, iss.5, pp. 359—366.
  36. Boev V. D. Simulation modeling of systems: a textbook for universities, Moscow, Yurayt, 2022, 253 p. (in Russian).
  37. Kulba V. V., Kononov D. A., Chernov I. V., Roshchin P. E., Shuligina O. A. Scenario Study of Complex Systems: Analysis of Group Management Methods, Management of Large Systems: Collection of Works, 2010, no. 30-1, pp. 154—186 (in Russian).
  38. Bolotova L. S. Decision Support Systems in 2 parts. Part 1: Textbook and Practical Course for Universities, Moscow, Yurayt, 2024, 257 p. (in Russian).
  39. Amosov O. S., Amosova S. G., Ivanov Y. S., Zhiganov S. V. Modelling of Intelligent Access Monitoring and Control System for Vehicles with Using the Deep Neural Networks, Informacionnye Tehnologii, 2019, vol. 25, no. 2, pp. 116—127 (in Russian).

 

To the contents