|
ABSTRACTS OF ARTICLES OF THE JOURNAL "INFORMATION TECHNOLOGIES".
No. 3. Vol. 31. 2025
DOI: 10.17587/it.31.161-168
I. A. Khromov, L. S. Voskov, Ph.D., Associate Professor,
National Research University Higher School of Economics (HSE), Moscow, 101 000, Russian Federation
Experimental Investigation of Energy Efficiency in Wireless Body Area Networks
Received on July 11, 2024
Accepted on November 08, 2024
This paper presents an energy-efficient architecture for wireless body area networks (WBANs) and a novel data transmission method that leverages the human body as a transmission medium. An experimental investigation is conducted to validate the energy efficiency of the proposed data transmission approach, which replaces traditional radio frequency (RF) methods. The results demonstrate a significant reduction in power consumption compared to Bluetooth Low Energy (BLE), with a 7-fold decrease, and ZigBee, with a 14-fold decrease.
Keywords: Bluetooth LE, BodyCom, capacitive coupling, human body communication, IBC, intrabody communication, WBAN, wireless body area network, ZigBee
P. 161-168
Full text on eLIBRARY
References
- Organization for Economic Co-operation and Development (OECD). Expenditure by disease, age and gender, Focus on Health Spending, 2016, pp. 8.
- Zhang A., Smith D. B., Miniutti D., Hanlen L. W., Rodda D., Gilbert Â. Performance of Piconet Co-Existence Schemes in Wireless Body Area Networks, 2010 IEEE Wireless Communication and Networking Conference, Sydney, NSW, Australia, 2010, pp. 1—6, doi: 10.1109/WCNC.2010.5506746.
- Hayajneh T., Almashaqbeh G., Ullah S., Vasilakos A. À survey of wireless technologies coexistence in WBAN: analysis and open research issues, Wireless Netw 20, 2014, pp. 2165—2199, doi: 10.1007/s11276-014-0736-8.
- Khan J. Y., Yuce M. R., Bulger G., Harding  . Wireless Body Area Network (WBAN) Design Techniques and Performance Evaluation, Journal of Medical Systems, 36, 2012, pp. 1441—1457, doi: 10.1007/s10916-010-9605-x.
- Yang W., Sayrafian-Pour K. Interference mitigation for body area networks, 2011 IEEE 22nd International Symposium on Personal, Indoor and Mobile Radio Communications, Toronto, ON, Canada, 2011, pp. 2193—2197, doi: 10.1109/PIMRC.2011.6139905.
- Movassaghi S., Majidi A., Jamalipour A., Smith D., Abolhasan M. Enabling interference-aware and energy-efficient coexistence of multiple wireless body area networks with unknown dynamics, IEEE Access, 2016, vol. 4, pp. 2935—2951, doi: 10.1109/ ACCESS.2016.2577681.
- Khromov I. A., Dvornikov À . A. The human body as the element of the computer network, 2017 International Conference "Quality Management, Transport and Information Security, Information Technologies" (IT&QM&IS), St. Petersburg, Russia, 2017, pp. 378—382, doi: 10.1109/ITMQIS.2017.8085838.
- Zimmerman T. G. Personal area networks (PAN): near-field intra-body communication, M. S. thesis, MIT Media Laboratory, Cambridge, MA, USA, 1995, pp. 81.
- Zimmerman T. G., Smith J. R., Paradiso J. A., Allport D., Gershenfeld N. Applying electric field sensing to human-computer interfaces, In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '95), ACM Press/ Addison-Wesley Publishing Co., USA, 1995, pp. 280—287, doi: 10.1145/223904.223940.
- Sung M., DeVaul R., Jimenez S., Gips J., Pentland À . Shiver motion and core body temperature classification for wearable soldier health monitoring systems, Eighth International Symposium on Wearable Computers, Arlington, VA, USA, 2004, pp. 192—193, doi: 10.1109/ISWC.2004.39.
- Harms H., Amft O., Roggen D., Troster G. SMASH: À Distributed Sensing and Processing Garment for the Classification of Upper Body Postures, BODYNETS 2008 — 3rd International ICST Conference on Body Area Networks, 2008, doi: 10.4108/ ICST.BODYNETS2008.2955.
- Khromov I. A. Application of BodyCom technology for access control, Distributed Computer and Communication Networks: Control, Computation, Communications (DCCN-2017), Moscow, Russia, 2017, pp. 379—381 (in Russian).
- Khromov I. A. The human body as an element of intersegment communication, Distributed Computer and Communication Networks: Control, Computation, Communications (DCCN-2019), Moscow, Russia, 2019, pp. 463—468 (in Russian).
- Khromov I. A., Voskov L. S. À Survey on Intrabody Communication Modeling Methods, Information Technologies, 2022, vol. 28, no. 11, pp. 570—579 (in Russian), doi: 10.17587/it.28.570-579.
- Bae J., Song K., Lee H., Cho H., Yoo H. À Low-Energy Crystal-Less Double-FSK Sensor Node Transceiver for Wireless Body-Area Network, IEEE Journal of Solid-State Circuits, 2012, vol. 47, no. 11, pp. 2678—2692, doi: 10.1109/JSSC.2012.2211654.
- Xu R., Ng W. C., Zhu H., Shan H., Yuan J. Equation Environment Coupling and Interference on the Electric-Field Intrabody Communication Channel, IEEE Transactions on Biomedi-cal Engineering, 2012, vol. 59, no. 7, pp. 2051—2059, doi: 10.1109/ TBME.2012.2197212.
- Falck T., Baldus H., Espina J., Klabunde K. Plug 'n Play Simplicity for Wireless Medical Body Sensors, Mobile Netw Appl 12, 2007, pp. 143—153, doi: 10.1007/s11036-007-0016-2.
- Ahmed D., Fischer G., Kirchner J. Simulation-based Models of the Galvanic Coupling Intra-body Communication, 2019 IEEE Sensors Applications Symposium (SAS), Sophia Antipolis, France, 2019, pp. 1—6, doi: 10.1109/SAS.2019.8706007.
- Xu R., Zhu H., Yuan J. Electric-Field Intrabody Communication Channel Modeling With Finite-Element Method, IEEE Transactions on Biomedical Engineering, 2011, vol. 58, no. 3, pp. 705—712, doi: 10.1109/TBME.2010.2093933.
- Xu R., Ng W. C., Zhu H., Shan H., Yuan J. Equation Environment Coupling and Interference on the Electric-Field In-trabody Communication Channel, IEEE Transactions on Biomedical Engineering, 2012, vol. 59, no. 7, pp. 2051—2059, doi: 10.1109/ TBME.2012.2197212.
- Haga N., Saito K., Takahashi M., Ito K. Proper Derivation of Equivalent-Circuit Expressions of Intra-Body Communication Channels Using Quasi-Static Field, IEICE Transactions on Communications, 2012, vol. E95.B, Iss. 1, pp. 51—59, doi: 10.1587/ transcom.E95.B.51.
- Haga N., Saito K., Takahashi M., Ito K. Equivalent Circuit of Intrabody Communication Channels Inducing Conduction Currents Inside the Human Body, IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 5, pp. 2807—2816, doi: 10.1109/TAP.2013.2246534.
- Fujii K., Takahashi M., Ito K. Electric Field Distributions of Wearable Devices Using the Human Body as a Transmission Channel, IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 7, pp. 2080—2087, doi: 10.1109/TAP.2007.900226.
- Wang J., Nishikawa Y., Shibata T. Analysis of On-Body Transmission Mechanism and Characteristic Based on an Electromagnetic Field Approach, IEEE Transactions on Microwave Theory and Techniques, 2009, vol. 57, no. 10, pp. 2464—2470, doi: 10.1109/ TMTT.2009.2029632.
- CST Studio Suite (Bioelectromagnetics Simulation), [Online], available at: https://www.3ds.com/products/simulia/electro-magnetic-simulation/bioelectromagnetics.
- Zhu X.-Q., Guo Y.-X., Wu W. Investigation and Modeling of Capacitive Human Body Communication, IEEE Transactions on Biomedical Circuits and Systems, 2017, vol. 11, no. 2, pp. 474—482, doi: 10.1109/TBCAS .2016 .2634121.
- Ansys Maxwell. Low Frequency EM Field Simulation // ANSYS, Inc[Online], available at: https://www.ansys.com/Products/Electronics/ANSYS-Maxwell.
- PathWave Advanced Design System (ADS), [Online], available at: https://www.keysight.com/us/en/products/software/pathwave-design-software/pathwave-advanced-design-system.html.
- Pop C. Introduction to the BodyCom Technology, Microchip Technology Inc., 2011, pp. 1—26.
- Khromov I. A., Dvornikov À . A. Wireless access monitoring and control system based on intrabody communication, 2016 IEEE Conference on Quality Management, Transport and Information Security, Information Technologies (IT&MQ&IS), Nalchik, Russia, 2016, pp. 82—85, doi: 10.1109/ITMQIS.2016.7751929.
- Lucev Z., Krois I., Cifrek M. À Capacitive Intrabody Communication Channel from 100 kHz to 100 MHz, IEEE Transactions on Instrumentation and Measurement, 2012, vol. 61, no. 12, pp. 3280—3289, doi: 10.1109/TIM.2012.2205491.
- Hwang J. H., Kang T. W., Park S. O., Kim Y. T. Empirical Channel Model for Human Body Communication, IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, pp. 694—697, doi: 10.1109/LAWP.2014.2377051.
- Hwang J., Kang T., Kim Y., Park S. Measurement of Transmission Properties of HBC Channel and Its Impulse Response Model, IEEE Transactions on Instrumentation and Measurement, 2016, vol. 65, no. 1, pp. 177—188, doi: 10.1109/TIM.2015.2476236.
- Tomlinson W. J., Banou S., Yu C., Nogueira M., Chowd-hury K. R. Secure On-skin Biometric Signal Transmission using Galvanic Coupling, IEEE INFOCOM 2019 — IEEE Conference on Computer Communications, Paris, France, 2019, pp. 1135—1143, doi: 10.1109/INFOCOM.2019.8737540.
- The ZigBee Alliance. ZigBee Specification. ZigBee Document 05-3474-21 (2015), [Online], available at: https://zigbee-alliance.org/wp-content/uploads/2019/11/docs-05-3474-21-0csg-zigbee-specification.pdf
- Silicon Labs. Telegesis ETRX35x ZigBee modules. Product manual (2019), [Online], available at: https://www.silabs.com/documents/public/data-sheets/TG-PM-0516-ETRX35x.pdf
- Bluetooth Technology Website. Radio Versions (2021), [Online], available at: https://www.bluetooth.com/bluetooth-tech-nology/radio-versions
- Microchip Technology Inc. RN4871 — Bluetooth Low Energy Module (2021), [Online], available at: https://www.micro-chip.com/wwwproducts/en/RN4871
- Microchip Technology Inc. Bluetooth Low Energy Module RN4870/71 Datasheet (2021), [Online], available at: http://ww1.microchip.com/downloads/en/DeviceDoc/RN4870-71-Bluetooth-Low-Energy-Module-Data-Sheet-DS50002489D.pdf
To the contents
|
|