main| new issue| archive| editorial board| for the authors| publishing house|
Ðóññêèé
Main page
New issue
Archive of articles
Editorial board
For the authors
Publishing house

 

 


ABSTRACTS OF ARTICLES OF THE JOURNAL "INFORMATION TECHNOLOGIES".
No. 11. Vol. 30. 2024

DOI: 10.17587/it.30.584-594

K. A. Stepanenko, Postgraduate, O. A. Shorina, Postgraduate,
Kazan (Volga region) Federal University, Kazan, Russian Federation

A QSimulator Quantum Programming System

In this paper the authors propose their own QSimulator quantum programming system, which is a software tool for deve­loping and debugging quantum algorithms in a high-level C++ language. The basic structure of the presented system is de­scribed, including quantum algorithms and quantum operations, available to the programmer. The components of the system and their fundamental basis are briefly outlined. This system emulates the behaviour of a quantum coprocessor in a standard computational basis and thus can be used for debugging and programming quantum algorithms in the language of quantum circuits. The system proposed by the authors also implements the Grover search algorithm and the Durr-Hoyer minimization algorithm based on it. Many tasks can be formulated in terms of the search task. In particular, the SAT problem. In this article, we also propose a variant of constructing an oracle in the form of a quantum circuit for the SAT problem, which can be integrated into the Grover algorithm implemented in the presented system. Automatic oracle generation for the SAT task will help save time in developing quantum algorithms related to this task when working with our system.
Keywords: quantum computing, quantum simulator, quantum algorithms, Grover search algorithm, Boolean satisfiability problem (SAT), quantum emulation, quantum circuit, quantum circuit complexity

P. 584-594

References

  1. Shor P. Algorithms for Quantum Computation: Discrete Logarithms and Factoring, Proc. 35th Ann. Symp. Foundations of Computer Science, IEEE CS Press, Los Alamitos, Calif., 1994, p. 124.
  2. Grover L. A Fast Quantum Mechanical Algorithm for Database Search / Grover L., Proc. 28th Ann. ACM Symp. Theory of Computation, ACM Press, New York, 1996, p. 212—219.
  3. Bernstein E., Vazirani U. Quantum complexity theory, Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, 1993, pp. 11—20.
  4. Deutsch D. Quantum theory, the Church—Turing principle and the universal quantum computer, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1985, vol. 400, no. 1818, pp. 97—117.
  5. Aharonov D. Fault-Tolerant Computation with Constant Error / Aharonov D., Ben-Or M., Proc. 29th Ann. ACM Symp. Theory of Computing, ACM Press, New York, 1997, pp. 176—188.
  6. D-Wave Systems Inc. Hundreds of Quantum Applications. [Electronic resourse], 2024, available at: https://www.dwavesys.com/learn/featured-applications/?items=all&thirdParty=-1#resource-list (date of access: 30.07.2024).
  7. D-Wave Systems Inc. Quantum in production: optimi­zing e-commerce logistics. [Electronic resourse], 2024. available at: https://www.dwavesys.com/media/2sof3qhz/the-pattison-food-group_case_storyv8.pdf (date of access: 30.07.2024).
  8. Javadi-Abhari A. et al. Quantum computing with Qiskit, arXiv preprint arXiv:2405.08810, 2024.
  9. AWS: Amazon Braket. What is Amazon Braket [Electronic resourse, 2024 available at: https://docs.aws.amazon.com/braket/latest/developerguide/what-is-braket.html (date of access: 07.08.2024).
  10. Abhari A. J. et al. Scaffold: Quantum programming language, Princeton Univ NJ Dept of Computer Science, 2012.
  11. LaRose R. Overview and comparison of gate level quantum software platforms, Quantum, 2019, vol. 3, pp. 130.
  12. Khammassi N. et al. OpenQL: A portable quantum programming framework for quantum accelerators, ACM Journal on Emerging Technologies in Computing Systems (JETC), 2021, vol. 18, no. 1, pp. 1—24.
  13. Certificate of state registration of a computer program 2023683330 Russian Federation. Program for the development of quantum algorithms and simulation of a quantum coprocessor: N 2023682323: application 25.10.2023: publ. 07.11.2023 / K. A. Stepanenko, O. A. Shorina; applicant and copyright holder is the FSAEI HE KFU. 1 p. (in Russian).
  14. Qiskit. Qiskit Aer documentation [Electronic resourse], 2024, available at: https://qiskit.github.io/qiskit-aer/index.html (date of access: 31.07.2024).
  15. Gill S. S. et al. Quantum computing: A taxonomy, syste­matic review and future directions, Software: Practice and Experience, 2022, vol. 52, no. 1, pp. 66—114.
  16. IBM. IBM Debuts Next-Generation Quantum Processor & IBM Quantum System Two, Extends Roadmap to Advance Era of Quantum Utility [Electronic resourse], 2024., available at: https://newsroom.ibm.com/2023-12-04-IBM-Debuts-Next-Generation-Quantum-Processor-IBM-Quantum-System-Two,-Extends-Roadmap-to-Advance-Era-of-Quantum-Utility (date of access: 31.07.2024).
  17. Serrano M. A. et al. Quantum software components and platforms: Overview and quality assessment, ACM Computing Surveys, 2022, vol. 55, no. 8, pp. 1—31.
  18. Maronese M. et al. Quantum compiling, Quantum Com­puting Environments, Cham, Springer International Publishing, 2022, pp. 39—74.
  19. Nielsen M., Chang I. Quantum computing and quantum information, Moscow, Mir, 2006, 822 p. (in Russian).
  20. Cook S. A. The complexity of theorem-proving proce­dures, Logic, automata, and computational complexity: The works of Stephen A. Cook, 2023, pp. 143—152.
  21. 21. Dantsin E., Krei novich V., Wolpert A. On quantum versions of record-breaking algorithms for SAT, ACM SIGACT News, 2005, vol. 36, no. 4, pp. 103—108.
  22. Varmantchaonala C. M. et al. Quantum hybrid algorithm for solving sat problem, Engineering Applications of Artificial Intelligence, 2023, vol. 121, pp. 106058.
  23. Bullock S. S., Markov I. L. Asymptotically optimal circuits for arbitrary n-qubit diagonal computations, arXiv preprint quant-ph/0303039, 2008.
  24. Iten R. et al. Quantum circuits for isometries, Physical Review A, 2016, vol. 93, no. 3, pp. 032318.
  25. Gainutdinova A. F. Fundamentals of quantum computing, Laboratory of operational printing of KSU Publishing House, 2009 (in Russian).
  26. Boyer M. et al. Tight bounds on quantum searching, Fortschritte der Physik: Progress of Physics, 1998, vol. 46, no. 4—5, pp. 493—505.
  27. Durr C., Hoyer P. A quantum algorithm for finding the minimum, arXiv preprint quant-ph/9607014, 1996.
  28. Marques-Silva J. Practical applications of boolean satisfi­ability, 2008 9th International Workshop on Discrete Event Systems, IEEE, 2008, pp. 74—80.

 

To the contents