main| new issue| archive| editorial board| for the authors| publishing house|
Ðóññêèé
Main page
New issue
Archive of articles
Editorial board
For the authors
Publishing house

 

 


ABSTRACTS OF ARTICLES OF THE JOURNAL "INFORMATION TECHNOLOGIES".
No. 8. Vol. 30. 2024

DOI: 10.17587/it.30.400-410

S. M. Avdoshin, Cand. of Tech. Sc., Professor, E. Y. Pesotskaya, Cand. of Econ. Sc., Ass. Professor,
HSE University — National Research University Higher School of Economics, Moscow, Russian Federation,
K. A. Patrushev, Student, National research Nuclear University MEPhI, Moscow, Russian Federation

Technologies of Trusted Artificial Intelligence

With the development of artificial intelligence (AI) systems, their popularity is growing. Such systems are used in many areas, from customer analytics and search engines to voice assistants and medical research. The tasks assigned to the systems are becoming more and more complex, and therefore artificial intelligence often needs to operate on confidential data; the results of the system's operation can have large-scale consequences. This creates a new problem: the problem of trusted artificial intelligence. The authors set the goal of systematizing knowledge about possible threats and vulnerabilities associated with the use of AI technologies, analyzing existing standards in this area, and also identifying and describing relevant technologies that can increase confidence in the use of intelligent systems.
Keywords: artificial intelligence, trust, security, machine learning

P. 400-410

References

  1. Gupta R., Srivastava D., Sahu M., Tiwari S., Ambasta R. K., Kumar P. Artificial intelligence to deep learning: machine intelligence approach for drug discovery, Molecular Diversity, 2021, vol. 25, no. 3, pp. 1315—1360, available at: https://doi.org/10.1007/s11030-021-10217-3.
  2. Bays H., Fitch A., Cuda S., Rickey E., Hablutzel J., Coy R., Censani M. Artificial intelligence and obesity management: An Obesity Medicine Association (OMA) Clinical Practice Statement (CPS), 2023, Obesity Pillars, vol. 6, available at: https://doi.org/10.1016/j.obpill.2023.100065.
  3. Watson N. F., Goldstein C., Rusk S., Fernandez C. How will artificial intelligence advance sleep medicine? In Elsevier eBooks, 2023, pp. 43—52, available at: https://doi.org/10.1016/b978-0-12-822963-7.00210-3.
  4. Meroueh C., Chen Z. E. Artificial intelligence in ana­tomical pathology: building a strong foundation for precision medicine, Human Pathology, 2022, vol. 132, pp. 31—38, available at: https://doi.org/10.1016/j.humpath.2022.07.008.
  5. Shandhi M. M. H., Dunn J. AI in medicine: Where are we now and where are we going? Cell Reports Medicine, 2022, vol. 3, no. 12, available at: https://doi.org/10.1016/j.xcrm.2022.100861.
  6. Schlaifer R. Probability and Statistics for Business Decisions Google Books, 1959, available at: https://books.google.ru/books/about/Probability_and_Statistics_for_Business. html?id=gvmCwQEACAAJ&redir_esc=y.
  7. Najem R., Amr M. F., Bahnasse A., Talea M. Artificial intelligence for digital finance, axes and techniques, Procedia Computer Science, 2022, vol, 203, pp. 633—638, available at: https://doi.org/10.1016/j.procs.2022.07.092.
  8. Goodell J. W., Kumar S., Lim W. M., Pattnaik D. Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis, Journal of Behavioral and Experimental Finance, 2021, vol. 32, available at: https://doi.org/10.1016/j.jbef.2021.100577.
  9. Giudici P., Raffinetti E. SAFE Artificial Intelligence in finance, Finance Research Letters, 2023, vol. 56, available at: https://doi.org/10.1016/j.frl.2023.104088.
  10. Guan C., Mou J., Jiang Z. Artificial intelligence innovation in education: A twenty-year data-driven historical analysis, International Journal of Innovation Studies, 2020, vol. 4, no. 4, pp. 134—147, available at: https://doi.org/10.1016/j.ijis.2020.09.001.
  11. Martinez-Comesafia M., Rigueira-Diaz X., Larrafiaga-Janeiro A., Martinez J. M., Ocarranza-Prado I., Kreibel D. Impact of artificial intelligence on assessment methods in primary and secondary education: Systematic literature review, Revista De Psicodid a ctica (English Ed.), 2023, vol. 28, no. 2, pp. 93—103, available at: https://doi.org/10.1016/j.psicoe.2023.06.002.
  12. Shaikh A. A., Kumar A., Jani K., Mitra S., Garcia-Tadeo D. A., Devarajan A. The Role of Machine Learning and Artificial Intelligence for making a Digital Classroom and its sustainable Impact on Education during Covid-19, Materials Today: Proceedings, 2022, vol. 56, pp. 3211—3215, available at: https://doi.org/10.1016/j.matpr.2021.09.368.
  13. Ka'bi A. A. Proposed artificial intelligence algorithm and deep learning techniques for development of higher education, International Journal of Intelligent Networks, 2023, vol. 4, pp. 68—73, available at https://doi.org/10.1016/j.ijin.2023.03.002.
  14. Fedorko R., Krai' S., Bacik R. Artificial intelligence in e-commerce: A Literature review, In Lecture notes on data enginee­ring and communications technologies, 2022, pp. 677—689, available at: https://doi.org/10.1007/978-981-16-9113-3_50.
  15. Rahman M. S., Li Y., Miraj M. R., Rob M. A. Artificial intelligence (AI) for energizing the e-commerce, ResearchGate, 2022.
  16. Vanneschi L., Horn D. M., Castelli M., Popovic A. An artificial intelligence system for predicting customer default in e-commerce, Expert Systems With Applications, 2018, vol. 104, pp. 1—21, available at: https://doi.org/10.1016/j.eswa.2018.03.025.
  17. Yingzi Z., Z Y. Research on user trust evaluation of social e-commerce platform based on artificial neural network, Optik, 2022, vol. 271, available at: https://doi.org/10.1016/j.ijleo.2022.170193.
  18. Siemasz R., Tomczuk K., Malecha Z. 3D printed robotic arm with elements of artificial intelligence, Procedia Computer Science, 2020, vol. 176, pp. 3741—3750, available at: https://doi. org/10.1016/j.procs.2020.09.013.
  19. Martinez-Martin E., Del Pobil A. P. Object detection and recognition for Assistive Robots: Experimentation and implementation, IEEE Robotics & Automation Magazine, 2017, vol. 24, no. 3, pp. 123—138, available at: https://doi.org/10.1109/mra.2016.2615329.
  20. Cai W., Liu Z., Zhang M., Wang C. Cooperative Artificial Intelligence for underwater robotic swarm, Robotics and Autono­mous Systems, 2023, vol. 164, available at: https://doi.org/10.1016/j.robot.2023.104410.
  21. Wu J., Wang X., Dang Y., Lv Z. Digital twins and arti­ficial intelligence in transportation infrastructure: Classification, application, and future research directions, Computers & Electrical Engineering, 2022, vol. 101, available at: https://doi.org/10.1016/j.compeleceng.2022.107983.
  22. Ushakov D., Dudukalov E., Shmatko L., Shatila K. Artificial Intelligence as a factor of public transportations system development, Transportation Research Procedia, 2022, vol. 63, pp. 2401—2408, available at: https://doi.org/10.1016/j.trpro.2022.06.276.
  23. Boukerche A., Tao Y., Sun P. Artificial intelligence-based vehicular traffic flow prediction methods for supporting intelligent transportation systems, Computer Networks, 2020, vol. 182, available at: https://doi.org/10.1016/j.comnet.2020.107484.
  24. Kayid A. The role of Artificial Intelligence in future technology, ResearchGate, 2020, available at: https://doi.org/10.13140/RG.2.2.12799.23201.
  25. Manikandan G., Krishnakumar V. Explainable AI: A key to trusting real-life machine learning applications, ResearchGate, available at: https://doi.org/10.13140/RG.2.2.33152.87043.
  26. Arrieta A. B. Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI, arXiv.org, 2019, available at: https://arxiv.org/ abs/1910.10045.
  27. Gupta R., Srivastava D., Sahu M., Tiwari S., Am-basta R. K., Kumar P. Artificial intelligence to deep learning: machine intelligence approach for drug discovery, Molecular Diversity, 2021, vol. 25, no. 3, pp. 1315—1360, available at: https://doi.org/10.1007/s11030-021-10217-3.
  28. Xu F., Uszkoreit H., Du Y., Fan W., Zhao D., Zhu J. Ex­plainable AI: A brief survey on history, research areas, approaches and challenges, In Lecture Notes in Computer Science, 2019, pp. 563—574, available at: https://doi.org/10.1007/978-3-030-32236-6_51.
  29. Saghiri A. M., Vahidipour S. M., Jabbarpour M. R., Sookhak M., Forestiero A. A Survey of Artificial intelligence Challenges: Analyzing the definitions, relationships, and evolutions, Applied Sciences, 2022, vol. 12, no. 8, available at: https://doi.org/10.3390/app12084054.
  30. Umamaheswari B., Kumawat V. Research Trends, Challenges, and Future of AI in data Science, ResearchGate, 2022, available at: https://www.researchgate.net/publication/358165563_Research_Trends_Challenges_and_Future_of_AI_in_data_Science.
  31. Chang X. Gender Bias in hiring: An analysis of the impact of Amazon's recruiting algorithm, Advances in Economics Management and Political Sciences, 2023, vol. 23, no. 1, pp. 134—140, available at: https://doi.org/10.54254/2754-1169/23/20230367.
  32. Raimundo R., Rosario A. T. The Impact of Artificial intel­ligence on data system Security: A literature review, Sensors, 2021, vol. 21, no. 21, available at: https://doi.org/10.3390/s21217029.
  33. Murdoch B. Privacy and artificial intelligence: challenges for protecting health information in a new era, BMC Medical Ethics, 2021, vol. 22, no. 1, available at: https://doi.org/10.1186/s12910-021-00687-3.
  34. Ahmed I. S., Kashmoola M. Threats on Machine learning technique by data Poisoning Attack: a survey, In Communications in computer and information science, 2021, pp. 586—600, available at: https://doi.org/10.1007/978-981-16-8059-5_36.
  35. Avdoshin S. M., Pesotskaya E. Yu. Doverennyj iskusst-vennyj intellekt kak sposob cifrovoj zashchity, Biznes-informatika, 2022. vol. 16, no. 2, pp. 62—73, available at: DOI: 10.17323/2587-814X.2022.2.62.73 (in Russian).
  36. Myllyaho L., Raatikainen M., Mannisto T., Nurminen J. K., Mikkonen T. On misbehaviour and fault tolerance in machine learning systems, Journal of Systems and Software, 2022, vol. 183, available at: https://doi.org/10.1016/j.jss.2021.111096.
  37. Neri E., Coppola, F., Miele V., Bibbolino C., Grassi R. Artificial intelligence: Who is responsible for the diagnosis? La Radiologia Medica, 2020, vol. 125, no. 6, pp. 517—521, available at: https://doi.org/10.1007/s11547-020-01135-9.
  38. Henz P. Ethical and legal responsibility for Artificial Intelligence, Discover Artificial Intelligence, 2021, vol. 1, no. 1, available at: https://doi.org/10.1007/s44163-021-00002-4.
  39. Hussein F., Hejase H. Artificial intelligence and fake news, Zurnalistikos Tyrimai, 2022, vol. 16, pp. 39—71, available at: https://doi.org/10.15388/zt/jr.2022.2.
  40. Onyeze C. N., Ede T. E. Impact of artificial intelligence on the future of work and the labor market, ResearchGate, 2023, available at: https://www.researchgate.net/publication/373546124_ Impact_of_Artificial_Intelligence_on_the_Future_of_Work_ and_the_Labor_Market.
  41. Whitehouse, available at: https://www.whitehouse.gov/wp-content/uploads/2022/10/Blueprint-for-an-AI-Bill-of-Rights.pdf (accessed: 12.09.2023).
  42. Finocchiaro G. D. The regulation of artificial intelli­gence, AI & SOCIETY, 2023, available at: https://doi.org/10.1007/ s00146-023-01650-z.
  43. GOST R 59276-2020 Artificial intelligence systems. Ways of ensuring trust. General provisions, 2020 (in Russian).
  44. GOST R 59895-2021 Artificial intelligence technologies in education. General provisions and terminology, 2021 (in Russian).
  45. GOST R 59920-2021 Artificial intelligence systems. Artificial intelligence systems in agriculture. Requirements for ensuring the operational safety characteristics of automated traffic control systems for agricultural machinery, 2021 (in Russian).
  46. GOST R 59921.0-2022 Artificial intelligence systems in clinical medicine. The main provisions, 2022 (in Russian).
  47. GOST R 70249-2022 Artificial intelligence systems in road transport. Highly automated vehicles. Terms and definitions, 2022 (in Russian).
  48. PNST 779-2022 Artificial intelligence for navigation systems of civil aviation aircraft. The algorithm of information processing for monitoring tools of the global navigation satellite system. Terms and definitions, 2022 (in Russian).
  49. GOST R 70321.1-2022 Artificial intelligence technologies for processing remote sensing data. Artificial intelligence algorithms for recognizing buildings in satellite images obtained from optical-electronic surveillance spacecraft. A typical test procedure, 2022 (in Russian).
  50. GOST R 70246-2022 Artificial intelligence algorithms in light-beam installations with natural and artificial radiation sources. General requirements. Part 1. Light emission, 2022 (in Russian).
  51. Whitehouse, Available at https://www.whitehouse.gov/wp-content/uploads/2022/10/Blueprint-for-an-AI-Bill-of-Rights. pdf (accessed: 12.09.2023).
  52. Gupta I., Singh A. K., Lee C., Buyya R. Secure Data
    Storage and Sharing Techniques for data protection in cloud environments: A Systematic review, analysis, and future directions, IEEE Access, 2022, vol. 10, available at: https://doi.org/10.1109/access.2022.3188110.
  53. Papernot N. Technical report on the CleverHans v2.1.0 Adversarial Examples Library, arXiv.org, 2016, available at: https://arxiv.org/abs/1610.00768.
  54. GitHub, available at: https://github.com/cleverhans-lab/cleverhans?ysclid=lq4v5ik3kn30445520 (accessed: 29.10.2023).
  55. Lee T. Defending against machine learning model stealing attacks using deceptive perturbations, arXiv.org, 2018, available at: https://arxiv.org/abs/1806.00054.
  56. ISPRAS, available at: https://www.ispras.ru/ai-center/?ysclid=lq4v7yi4bb256505337 (accessed: 29.10.2023) (in Russian).
  57. Baraheem S. S., Nguyen T. AI vs. AI: Can AI Detect AI-Generated Images? Journal of Imaging, 2023, vol. 9, no. 10, available at: https://doi.org/10.3390/jimaging9100199.
  58. GitHub, available at: https://github.com/apache/airflow?ysclid = lq4veof9ih741584070 (accessed: 29.10.2023)

To the contents