main| new issue| archive| editorial board| for the authors| publishing house|
Ðóññêèé
Main page
New issue
Archive of articles
Editorial board
For the authors
Publishing house

 

 


ABSTRACTS OF ARTICLES OF THE JOURNAL "INFORMATION TECHNOLOGIES".
No. 7. Vol. 30. 2024

DOI: 10.17587/it.30.331-335

A. M. Sergeev, Ph.D., Associate Professor,
Saint Petersburg State University of Aerospace Instrumentation, Saint Petersburg, 190000, Russian Federation

On Quantum Generation of Random Sequences as the Basis for Constructing Bicyclic Orthogonal Matrices

The paper identifies three main approaches to obtaining Hadamard matrices: search using combinatorial methods, calculation with control based on the theory of dynamical systems and the construction of matrices of fixed structures. For the search and construction of Hadamard matrices, the main tool of the source material is the generation of random sequences. The issues of fixing the structures of Hadamard matrices in the form of a bicyclic construction are considered. To obtain such high-order matrices, important procedures are the generation, filtering and selection of such pairs of sequences that an orthogonal matrix of order n could be constructed from the cyclic matrices of order n/2 obtained on their basis. There is a significant influence of the quality of generated random sequences on the construction time of bicyclic matrices. The results of the first experiments with 1 million random sequences of length 100 generated on a quantum generator based on the interference effect of laser pulses with a random phase are presented. In particular, previously unknown Hadamard matrices of orders up to 100 bicyclic structures and maximum determinant matrices on non-Hadamard orders were obtained in a computer experiment.
Keywords: quantum generation of random sequences, Hadamard matrices, bicyclic structures, construction of Hadamard matrices, determinant maximum matrices

P. 331-335

Acknowledgements: The paper was prepared with the financial support of the Ministry of Science and Higher Education of the Russian Federation, grant agreement No. FSRF-2023-0003.


References

 

  1. Manin Yu. I. Computable and non-computable, Moscow, Sovetskoe radio, 1980, 128 p. (in Russian).
  2. Feyman R. Simulating Physics with Computers, International Journal of Theoretical Physics, 1982, vol. 21, iss. 6—7, pp. 467—488.
  3. Benioff P. Quantum mechanical hamiltonian models of turing machines, Journal of Statistical Physics, 1982, vol. 29, no 3, pp. 515—546.
  4. Sigov A. S., Andrianova E. G., Zhukov D. O., Zykov S. V., Tarasov I. E. Quantum Informatics: overview of the main achievements, Rossijskij tekhnologicheskij zhurnal, 2019, Vol. 7, no. 1. pp. 5—37. DOI: 10.32362/2500-316X-2019-7-1-5-37 (in Russian).
  5. Quantum Algorithm Zoo. URL: https://quantumalgorithmzoo.org/
  6. Hvoshch S. Ò . Hadamard matrices as a source of quantum computer tests, Inzhenernyj vestnik Dona, 2023, no 3. ivdon.ru/ru/magazine/archive/n3y2023/8265 (in Russian).
  7. Jennifer S., Yamada M. Hadamard Matrices: Construc­tions using number theory and linear algebra, New York, John Wiley and Sons, 2020, 384 p.
  8. Balonin N. A., Sergeev M. B., Suzdal V. S. Dynamic Generators of the Quasiortogonal Hadamard Matrix Family, SPI-IRAS Proceedings, 2017, no 5(54), pp. 224—243. DOI: 10.15622/ sp.54.10 (in Russian).
  9. Balonin N. A., Sergeev M. B. Propus Matrices 92 and 116, Informatsionno-upravliaiushchie sistemy, 2016, no 2 (81), pp. 101—103. DOI: 10.15217/issn1684-8853.2016.2.101 (in Russian).
  10. Fletcher R. J., Gysin M., Seberry J. Application of the discrete Fourier transform to the search for generalised Legendre pairs and Hadamard matrices, Australasian Journal of Combinatorics, 2001, vol. 23, pp. 75—86.
  11. Balonin N. A., Kurtyanik D. V. Alternances of Fourier Spectra for Sequences of Hadamard Matrix Families, Proceedings of Saint Petersburg Electrotechnical University, 2022, no 8, pp. 17—24. DOI: 10.32603/2071-8985-2022-15-8-17-24 (in Russian).
  12. Ivanov Ì . À ., Chugunkov I. V Theory, application and quality assessment of pseudorandom sequence generators, Mosñow, Kudic-obraz, 2003, 240 p. (in Russian).
  13. Balygin K. A., Zajcev V. I., Klimov À . N., Kulik S. P., Molotkov S. N. Implementation of a quantum random number generator based on the optimal clustering of photocounts, Journal of Experimental and Theoretical Physics Letters, 2017, vol. 106, iss. 7, pp. 451—458. DOI: 10.7868/S0370274X17190109 (in Russian).
  14. Shakhovoy R., Sych D., Sharoglazova V., Udaltsov A., Fedorov A., Kurochkin Y. Quantum noise extraction from the interference of laser pulses in an optical quantum random number generator, Optics Express, 2020, vol. 28, iss. 5, pp. 6209—6224. DOI: 10.1364/OE.380156.
  15. Olivia Di Matteo. Methods for parallel quantum circuit synthesis, fault-tolerant quantum RAM, and quantum state to­mography / A thesis for the degree of PhD in Physics-Quantum Information, Waterloo, Ontario, Canada, 2019. https://uwspace.uwaterloo.ca/bitstream/handle/10012/14371/DiMatteo_Olivia. pdf?sequence=3&isAllowed=y.
  16. Balonin Yu. N., Vostrikov A. A., Kurtyanik D. V., Sergeev À . Ì . Improving the efficiency of Hadamard matrix mining for digital conversion methods, Nauka, tekhnologii, obshchestvo — NTO-II-2022, Sbornik nauchnyh statej po materialam II Vserossijskoj nauchnoj konferencii. Krasnoyarsk, 2022, pp. 92—100. DOI: 10.47813/nto.2.2022.5.92-100.

To the contents