|
ABSTRACTS OF ARTICLES OF THE JOURNAL "INFORMATION TECHNOLOGIES".
No. 6. Vol. 30. 2024
DOI: 10.17587/it.30.279-290
J. V. Najafli, Doctoral Student,
Azerbaijan Technical University, Baku, Azerbaijan
The Application of Artificial Intelligence in the Field of Renewable Energy: An Overview
The article provides an overview of the various applications of AI in the field of renewable energy, including its production and resource management. It analyzes key trends and achievements reflected in existing research, and also identifies promising areas for development. In conclusion, the overview article highlights the importance and potential of AI in the energy sector.
Keywords: Artificial intelligence, energy, energy production, model, photovoltaic networks, wind turbines, hydroelectric power, hydrogen energy
P. 279-290
References
- Dincer I. Renewable energy and sustainable development: a crucial review, Renewable and sustainable energy reviews, 2000, vol. 4, no. 2, pp. 157—175.
- Gross R., Leach M., Bauen A. Progress in renewable energy, Environment international, 2003, vol. 29, no. 1, pp. 105—122.
- Sadorsky P. Renewable energy consumption and income in emerging economies, Energy policy, 2009, vol. 37, no. 10, pp. 4021—4028.
- Tao C., Gao J., Wang T. Testing and quality validation for ai software—perspectives, issues, and practices, IEEE Access, 2019, vol. 7, pp. 120164—120175.
- Alqahtani A. S., Kshirsagar P. R., Manoharan H., Balachan-dran P. K., Yogesh C. K., Selvarajan S. Prophetic Energy Assessment with Smart Implements in Hydroelectricity Entities Using Artificial Intelligence Algorithm, International Transactions on Electrical Energy Systems, 2022.
- Wagner H. J., Mathur J. Introduction to hydro energy systems: basics, technology and operation, Springer Science & Business Media, 2011.
- OzcAn E., DAn ?s An T., Yumu s Ak R., Eren T. An artificial neural network model supported with multi criteria decision making approaches for maintenance planning in hydroelectric power plants, Eksploatacja i Niezawodnosc, 2020, vol. 22, no. 3.
- Abubakar M., Che Y., Ivascu L., Almasoudi F. M., Jamil I. Performance Analysis of Energy Production of Large-Scale Solar Plants Based on Artificial Intelligence (Machine Learning), Technique, Processes, 2022, vol. 10, no. 9, pp. 1843.
- Molina J. M., Isasi P., Berlanga A., Sanchis A. Hydroelectric power plant management relying on neural networks and expert system integration, Engineering Applications of Artificial Intelligence, 2000, vol. 13, no. 3, pp. 357—369.
- Alqahtani A. S., Kshirsagar P. R., Manoharan H., Balachandran P. K., Yogesh C. K., Selvarajan S. Prophetic Energy Assessment with Smart Implements in Hydroelectricity Entities Using Artificial Intelligence Algorithm, International Transactions on Electrical Energy Systems, 2022.
- Selak L., Butala P., Sluga A. Condition monitoring and fault diagnostics for hydropower plants, Computers in Industry, 2014, vol. 65, no. 6, pp. 924—936.
- Hammid A. T., Sulaiman M. H. B., Abdalla A. N. Prediction of small hydropower plant power production in Himreen Lake dam (HLD) using artificial neural network, Alexandria engineering journal, 2018, vol. 57, no. 1, pp. 211—221.
- Niu W. J., Feng Z. K., Feng B. F., Min Y. W., Cheng C. T., Zhou J. Z. Comparison of multiple linear regression, artificial neural network, extreme learning machine, and support vector machine in deriving operation rule of hydropower reservoir, Water, 2019, vol. 11, no. 1, pp. 88.
- He Z., Zhou J., Qin H., Jia B., Lu C. Long-term joint scheduling of hydropower station group in the upper reaches of the Yangtze River using partition parameter adaptation differential evolution, Engineering Applications of Artificial Intelligence, 2019, vol. 81, pp. 1—13.
- Shi Chunxue, Xiwen Feng, Zhennan Jin. Sustainable development of China's smart energy industry based on artificial intelligence and low-carbon economy, Energy Science & Engineering, 2022, vol. 10, no. 1, pp. 243—252.
- Liao G. P., Gao W., Yang G. J., Guo M. F. Hydroelectric generating unit fault diagnosis using 1-D convolutional neural network and gated recurrent unit in small hydro, IEEE Sensors Journal, 2019, vol. 19, no. 20, pp. 9352—9363.
- Dehghani M., Riahi-Madvar H., Hooshyaripor F., Mosavi A., Shamshirband S., Zavadskas E. K., Chau K. W. Prediction of hydropower generation using grey wolf optimization adaptive neuro-fuzzy inference system, Energies, 2019, vol. 12, no. 2, pp. 289.
- Lopes M. N. G., da Rocha B. R. P., Vieira A. C., de Sa J. A. S., Rolim P. A. M., da Silva A. G. Artificial neural networks approaches for predicting the potential for hydropower generation: a case study for Amazon region, Journal of Intellient & Fuzzy Systems, 2019, vol. 36, no. 6, pp. 5757—5772.
- OzcAn E., DAniAn T., YumuAk R., Eren T. An artificial neural network model supported with multi criteria decision making approaches for maintenance planning in hydroelectric power plants, Eksploatacja i Niezawodnosc, 2020, vol. 22, no. 3.
- Castillo-Boton C., Casillas-Perez D., Casanova-Mateo C., Moreno-Saavedra L. M., Morales-Diaz B., Sanz-Justo J., Sal-cedo-Sanz S. Analysis and prediction of dammed water level in a hydropower reservoir using machine learning and persistence-based techniques, Water, 2020, vol. 12, no. 6, pp. 1528.
- Falchetta G., Kasamba C., Parkinson S. C. Monitoring hydropower reliability in Malawi with satellite data and machine learning, Environmental Research Letters, 2020, vol. 15, no. 1, pp. 014011.
- Yildiz C., Ayikgoz H. Forecasting diversion type hydropower plant generations using an artificial bee colony based extreme learning machine method, Energy Sources, Part B: Economics, Planning, and Policy, 2021, vol. 16, no. 2, pp. 216—234.
- Al Rayess H. M., Keskin A. U. Forecasting the hydroelectric power generation of GCMs using machine learning techniques and deep learning (Almus Dam, Turkey), Geofizika, 2021, vol. 38, no. 1, pp. 1—14.
- Hanoon M. S., Ahmed A. N., Razzaq A., Oudah A. Y., Alkhayyat A., Huang Y. F., El-Shafie A. Prediction of hydropower generation via machine learning algorithms at three Gorges Dam, China, Ain Shams Engineering Journal, 2023, vol. 14, no. 4, pp. 101919.
- Rathnayake N., Rathnayake U., Dang T. L., Hoshino Y. A Cascaded Adaptive Network-Based Fuzzy Inference System for Hydropower Forecasting, Sensors, 2022, vol. 22, no. 8, pp. 2905.
- Winter C. J., Sizmann R. L., Vant-Hull L. L. (Eds.) Solar power plants: fundamentals, technology, systems, economics, Springer Science & Business Media, 2012.
- Ugli T. J. T. The importance of alternative solar energy sources and the advantages and disadvantages of using solar panels in this process, International Journal of Engineering and Information Systems (IJEAIS), 2019, vol. 3, iss. 4, pp. 60—64.
- Mellit A., Pavan A. M. A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy, Solar energy, 2010, vol. 84, no. 5, pp. 807—821.
- Chen C., Duan S., Cai T., Liu B. Online 24-h solar power forecasting based on weather type classification using artificial neural network, Solar energy, 2011, vol. 85, no. 11, pp. 2856—2870.
- Kuo P. H., Huang C. J. A green energy application in energy management systems by an artificial intelligence-based solar radiation forecasting model, Energies, 2018, vol. 11, no. 4, pp. 819.
- Puri V., Jha S., Kumar R., Priyadarshini I., Abdel-Bas-set M., Elhoseny M., Long H. V. A hybrid artificial intelligence and internet of things model for generation of renewable resource of energy, Ieee Access, 2019, vol. 7, pp. 111181—111191.
- Bouchouicha K., Bailek N., Razagui A., EL-Shimy M., Bellaoui M., Bachari N. E. I. Comparison of artificial intelligence and empirical models for energy production estimation of 20 MWp solar photovoltaic plant at the Saharan Medium of Algeria, International Journal of Energy Sector Management, 2021, vol. 15, no. 1, pp. 119—138.
- Benammar S., Tee K. F. Criticality analysis and maintenance of solar tower power plants by integrating the artificial intelligence approach, Energies, 2021, vol. 14, no. 18, pp. 5861.
- Geethamahalakshmi G., Kalaiarasi N., Nageswari D. Fuzzy Based MPPTand Solar Power Forecasting Using Artificial Intelligence, Intelligent Automation & Soft Computing, 2022, vol. 32, no. 3.
- Zayed M. E., Zhao J., Li W., Elsheikh A. H., Abd Elaziz M., Yousri D., Mingxi Z. Predicting the performance of solar dish Stirling power plant using a hybrid random vector functional link/chimp optimization model, Solar Energy, 2021, vol. 222, pp. 1—17.
- Gutierrez L., Patifio J., Duque-Grisales E. A comparison of the performance of supervised learning algorithms for solar power prediction, Energies, 2021, vol. 14, no. 15, pp. 4424.
- Zaaoumi A., Bah A., Ciocan M., Sebastian P., Ba-lan M. C., Mechaqrane A., Alaoui M. Estimation of the energy production of a parabolic trough solar thermal power plant using analytical and artificial neural networks models, Renewable Energy, 2021, vol. 170, pp. 620—638.
- Ghadami N., Gheibi M., Kian Z., Faramarz M. G., Na-ghedi R., Eftekhari M., Tian G. Implementation of solar energy in smart cities using an integration of artificial neural network, photovoltaic system and classical Delphi methods, Sustainable Cities and Society, 2021, vol. 74, pp. 103149.
- Ibrahim M., Alsheikh A., Awaysheh F. M., Alshehri M. D. Machine learning schemes for anomaly detection in solar power plants, Energies, 2022, vol. 15, no. 3, pp. 1082.
- Wu Y. K., Lai Y. H., Huang C. L., Phuong N. T. B., Tan W. S. Artificial Intelligence Applications in estimating invisible solar power generation, Energies, 2022, vol. 15, no. 4, pp. 1312.
- Abubakar M., Che Y., Ivascu L., Almasoudi F. M., Jamil I. Performance Analysis of Energy Production of Large-Scale Solar Plants Based on Artificial Intelligence (Machine Learning) Technique, Processes, 2022, vol. 10, no. 9, pp. 1843.
- S o der L., Ackermann T. Wind power in power systems: an introduction, Wind power in power systems, Royal Institute of Technology, 2012, pp. 47—72.
- Papathanassiou S. A., Kladas A. G., Tegopoulos J. A. Applications of artificial intelligence techniques in wind power generation, Integrated Computer-Aided Engineering, 2001, vol. 8, no. 3, pp. 231—242.
- Jursa R. Wind power prediction with different artificial intelligence models, Proceedings of the 2007 European Wind Energy Conference and Exhibition (EWEC), 2007, pp. 1—10.
- Jursa R., Rohrig K. Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models, International Journal of Forecasting, 2008, vol. 24, no. 4, pp. 694—709.
- Kusiak A., Verma A. A data-mining approach to monitoring wind turbines, IEEE Transactions on Sustainable Energy, 2011, vol. 3, no. 1, pp. 150—157.
- Wu Y. K., Lee C. Y., Chen C. R., Hsu K. W., Tseng H. T. Optimization of the wind turbine layout and transmission system planning for a large-scale offshore windfarm by AI technology, IEEE Transactions on Industry Applications, 2013, vol. 50, no. 3, pp. 2071—2080.
- Lawan S. M., Abidin W. A. W. Z., Lawan S., Lawan A. M. An artificial intelligence strategy for the prediction of wind speed and direction in Sarawak for wind energy mapping, Recent Advances in Mathematical Sciences: Selected Papers from ICREM7 2015, Springer Singapore, 2016, pp. 71—82.
- Benlahbib B., Bouchafaa F., Mekhilef S., Bouarroudj N. Wind Farm Management using Artificial Intelligent Techniques, International Journal of Electrical & Computer Engineering, 2017, vol. 7, no. 3.
- Reyes A., Ibarg u engoytia P. H., Jij o n J. D., Guerrero T., Garc i a U. A., Borunda M. Wind power forecasting for the Villonaco wind farm using AI techniques, Advances in Soft Computing: 15th Mexican International Conference on Artificial Intelligence, MICAI2016, Cancun, Mexico, October 23—28, 2016, Proceedings, Part II15, Springer International Publishing, 2017, pp. 226—236.
- Zhao X., Wang C., Su J., Wang J. Research and application based on the swarm intelligence algorithm and artificial intelligence for wind farm decision system, Renewable energy, 2019, vol. 134, pp. 681—697.
- Fu T., Wang C. A hybrid wind speed forecasting method and wind energy resource analysis based on a swarm intelligence optimization algorithm and an artificial intelligence model, Sustainability, 2018, vol. 10, no. 11, pp. 3913.
- Reddy A., Indragandhi V., Ravi L., Subramaniyaswamy V. Detection of Cracks and damage in wind turbine blades using artificial intelligence-based image analytics, Measurement, 2019, vol. 147, pp. 106823.
- Noureldeen O., Hamdan I., Hassanin B. Design of advanced artificial intelligence protection technique based on low voltage ride-through grid code for large-scale wind farm generators: a case study in Egypt, SN Applied Sciences, 2019, vol. 1, pp. 1—19.
- Mert i., Unes F., Karaku § C., Joksimovic D. Estimation of wind energy power using different artificial intelligence techniques and empirical equations, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2021, vol. 43, no. 7, pp. 815—828.
- Veena R., Mathew S., Petra M. I. Artificially intelligent models for the site-specific performance of wind turbines, International Journal of Energy and Environmental Engineering, 2020, vol. 11, pp. 289—297.
- Higgins S., Stathopoulos T. Application of artificial intelligence to urban wind energy, Building and Environment, 2021, vol. 197, pp. 107848.
- Amini A., Kanfoud J., Gan T. H. An Artificial Intelligence Neural Network Predictive Model for Anomaly Detection and Monitoring of Wind Turbines Using SCADA Data, Applied Artificial Intelligence, 2022, vol. 36, no. 1, pp. 2034718.
- Bonacina F., Miele E. S., Corsini A. On the use of Artificial Intelligence for Condition Monitoring in Horizontal-Axis Wind Turbines. In IOP Conference Series: Earth and Environmental Science, 2022, vol. 1073, no. 1, pp. 012005.
- Kim D. Y., Kim B. S. Contribution of meteorological factors based on explainable artificial intelligence in predicting wind farm power production using machine learning algorithms, Journal of Renewable and Sustainable Energy, 2023, vol. 15, no. 1.
- Ho T., Karri V. Basic tuning of hydrogen powered car and artificial intelligent prediction of hydrogen engine characteristics, International journal of hydrogen energy, 2010, vol. 35, no. 18, pp. 10004—10012.
- Ho T., Karri V., Lim D., Barret D. An investigation of engine performance parameters and artificial intelligent emission prediction of hydrogen powered car, International journal of hydrogen energy, 2008, vol. 33, no. 14, pp. 3837—3846.
- Deb M., Majumder P., Majumder A., Roy S., Banerjee R. Application of artificial intelligence (AI) in characterization of the performance—emission profile of a single cylinder CI engine operating with hydrogen in dual fuel mode: an ANN approach with fuzzy-logic based topology optimization, International Journal of Hydrogen Energy, 2016, vol. 41, no. 32, pp. 14330—14350.
- Y i ld i r i m S., Tosun E., ?al i k A., Uluocak i., Avsar E. Artificial intelligence techniques for the vibration, noise, and emission characteristics of a hydrogen-enriched diesel engine, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019, vol. 41, no. 18, pp. 2194—2206.
- Alsaffar M. A., Ayodele B. V., Mustapa S. I. Scavenging carbon deposition on alumina supported cobalt catalyst during renewable hydrogen-rich syngas production by methane dry reforming using artificial intelligence modeling technique, Journal of Cleaner Production, 2020, vol. 247, pp. 119168.
- Ghugare S. B., Tiwary S., Elangovan V., Tambe S. S. Prediction of higher heating value of solid biomass fuels using artificial intelligence formalisms, Bioenergy Research, 2014, vol. 7, pp. 681—692.
- Kumbhar D., Palliyarayil A., Reghu D., Shrungar D., Umapathy S., Sil S. Rapid discrimination of porous bio-carbon derived from nitrogen rich biomass using Raman spectroscopy and artificial intelligence methods, Carbon, 2021, vol. 178, pp. 792—802.
- Khalida B., Mohamed Z., Belaid S., Samir H. O., Sob-hi K., Midane S. Prediction of higher heating value HHV of date palm biomass fuel using artificial intelligence method, 2019 8th International Conference on Renewable Energy Research and Applications (ICRERA), IEEE, 2019, pp. 59—62.
- Senocak A. A., Goren H. G. Forecasting the biomass-based energy potential using artificial intelligence and geographic information systems: A case study, Engineering Science and Technology, an International Journal, 2022, vol. 26, pp. 100992.
- Mutlu A. Y., Yucel O. An artificial intelligence based approach to predicting syngas composition for downdraft biomass gasification, Energy, 2018, vol. 165, pp. 895—901.
- Khosravi A., Syri S., Zhao X., Assad M. E. H. An artificial intelligence approach for thermodynamic modeling of geo-thermal based-organic Rankine cycle equipped with solar system, Geothermics, 2019, vol. 80, pp. 138—154.
- Ariturk M. S. Optimizing the production and injection wells flow rates in geothermal field using artificial intelligence, West Virginia University, 2019.
- Ak i n S., Kok M. V., Uraz I. Optimization of well placement geothermal reservoirs using artificial intelligence, Computers & Geosciences, 2010, vol. 36, no. 6, pp. 776—785.
- Buster G., Siratovich P., Taverna N., Rossol M., Weers J., Blair A., Akerley J. A new modeling framework for geothermal operational optimization with machine learning (GOOML), Energies, 2021, vol. 14, no. 20, pp. 6852.
- Assouline D., Mohajeri N., Gudmundsson A., Scartez-zini J. L. A machine learning approach for mapping the very shallow theoretical geothermal potential, Geothermal Energy, 2019, vol. 7, no. 1, pp. 1—50.
To the contents
|
|