|
||||||||||
|
DOI: 10.17587/it.29.284-289 V. N. Tarasov, Dr. of Tech. Sc., Professor, Head of Department of POUTS, Features of Analytical Modeling of QS with Hypererlang and Erlang Distributions The article is devoted to the construction of a mathematical model for delaying claims in a queue in the form of a queuing system (QS) described by right-shifted hyper-Erlang and second-order Erlang distributions. This article is a logical continuation of the previous works of the author. In the article, the Erlang distribution is considered as a special case of the more general Gamma distribution law, in contrast to the normalized Erlang distribution. These two forms of the Erlang distribution differ in numerical characteristics, except for the coefficient of variation. To solve the problem, we used the method of spectral solution of the Lindley integral equation. P. 284-289 References 1. Kleinrock L. Queueing Systems, Vol. I: Theory, New York, Wiley, 1975, 417 p. 2. Tarasov V. N. Analysis and comparison of two queueing systems with hypererlangian input distributions, Radio Electronics Computer Science Control, 2018, vol. 47, no. 4, pp. 61—70. DOI: 10.15588/1607-3274-2018-4-6 3. Tarasov V. N., Bakhareva N. F., Blatov I. A. Analysis and calculation of queuing system with delay, Automation and Remote Control, 2015, vol. 52, no. 11, pp. 1945—1951. DOI: 10.1134/S0005117915110041 4. Tarasov V. N. Extension of the Class of Queueing Systems with Delay, Automation and Remote Control, 2018, vol. 79, no. 12, pp. 2147—2157. DOI: 10.1134/S0005117918120056 5. Tarasov V. N., Ahmetshina E. G. Average waiting time in a queuing system H2/H2/1 with delay, Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Fiziko-matematicheskie nauki, 2018, vol. 22, no. 4, pp. 702—713 (in Russian). 6. Tarasov V. N. Queuing Systems with a time Lag, Informacionnye tehnologii, 2021, vol. 27, no.6, pp. 291—298 (in Russian). 7. Tarasov V. N., Lipilina L. V., Bakhareva N. F. Avtomatizaciya rascheta harakteristik sistem massovogo obsluzhivaniya dlya shirokogo diapazona izmeneniya ih parametrov, Informacionnye tehnologii, 2016, vol. 22, no. 12, pp. 952—957 (in Russian). 8. Aliev T. I. Fundamentals of Modeling Discrete Systems, SPb., SPbGU ITMO, 2009, 363 p. (in Russian). 9. Aliev T. I. Approksimaciya veroyatnostnyh raspredelenij v modelyah massovogo obsluzhivaniya, Nauchno-tekhnicheskij vestnik informacionnyh tekhnologij, mekhaniki i optiki, 2013, vol. 84, no. 2, pp. 88—93 (in Russian). 10. Brannstrom N. A. Queueing Theory analysis of wireless radio systems. Appllied to HS-DSCH, Lulea university of technology, 2004, 79 p. 11. Whitt W. Approximating a point process by a renewal process: two basic methods, Operation Research, 1982, vol. 30, no. 1, pp. 125—147. 12. Myskja A. An improved heuristic approximation for the GI/ GI/1 queue with bursty arrivals. Teletraffic and datatraffic in a Period of Change, ITC-13. Elsevier Science Publishers, 1991, pp. 683—688. 13. Bocharov P. P., Pechinkin A. V. Queueing Theory, Moscow, Publishing House of Peoples’ Friendship University, 1995, 529 p. 14. Novitzky S., Pender J., Rand R. H., Wesson E. Limiting the oscillations in queues with delayed information through a novel type of delay announcement, Queueing Systems, 2020, vol. 95, pp. 281—330. DOI: https://doi.org/10.1007/s11134-020-09657-9 15. Novitzky S., Pender J., Rand R. H., Wesson E. Nonlinear Dynamics in Queueing Theory: Determinin g the Size of Oscillations in Queues with Delay, SIAM J. Appl. Dyn. Syst., 18-1 2019, vol. 18, no. 1, pp. 279—311. DOI: https://doi.org/10.1137/18M1170637 16. Aras A. K., Chen X., Liu Y. Many-server Gaussian limits for overloaded non-Markovian queues with customer abandonment, Queueing Systems, 2018, vol. 89, no. 1, pp. 81—125. DOI: https://doi.org/10.1007/s11134-018-9575-0. 17. Jennings O. B., Pender J. Comparisons of ticket and standard queues, Queueing Systems, 2016, vol. 84, no. 1, pp. 145—202. DOI: https://doi.org/10.1007/s11134-016-9493-y 18. Gromoll H. C., Terwilliger B., Zwart B. Heavy traffic limit for a tandem queue with identical service times, Queueing Systems, 2018, vol. 89, no. 3, pp. 213—241. DOI: https://doi.org/10.1007/s11134-017-9560-z 19. Legros B. M/G/1 queue with event-dependent arrival rates, Queueing Systems, 2018, vol. 89, no. 3, pp. 269—301. DOI: https://doi.org/10.1007 /s11134-017-9557-7 20. Bazhba M., Blanchet J., Rhee CH. et al. Queue with heavytailed Weibull service times, Queueing Systems, 2019, vol. 93, no. 11, pp. 1—32. DOI: https://doi.org/10.1007/s11134-019-09640-z/ 21. Adan I., D’Auria B., Kella O. Special volume on ‘Recent Developments in Queueing Theory’ of the third ECQT conference, Queueing Systems, 2019, vol. 93, no. 1, pp. 1—190. DOI: https://doi.org/10.1007/s11134-019-09630-1. 22. Adan I., D’Auria B., Kella O. Special volume on ‘Recent Developments in Queueing Theory’ of the third ECQT conference: part 2, Queueing Systems, 2019, pp. 1—2. DOI: https://doi.org/10.1007/s11134-019-09637-8 23. Tibi D. Martingales and buffer overflow for the symmetric shortest queue model, Queueing Systems, vol. 93, 2019, pp. 153—190. DOI: 10.1007/s11134-019-09628-9. 24. Jacobovic R., Kella O. Asymptotic independence of regenerative processes with a special dependence structure, Queueing Systems, vol. 93, 2019, pp. 139—152. DOI: 10.1007/s11134-019-09606-1. 25. Wang L., Kulkarni V. Fluid and diffusion models for a system of taxis and customers with delayed matching, Queueing Systems, vol. 96, 2020, pp. 101—131. DOI: 10.1007/s11134-020-09659-7.
|