|
ABSTRACTS OF ARTICLES OF THE JOURNAL "INFORMATION TECHNOLOGIES".
No. 4. Vol. 29. 2023
DOI: 10.17587/it.29.182-188
R. G. Alakbarov, Ph.D., Associate Professor,
Ministry of Science and Education Republic of Azerbaijan Institute of Information Technology,
Baku, AZ114, Azerbaijan Republic
Model of Optimal Placement of Cloudlets in a Wireless Metropolitan Area Network
Cloud computing has recently emerged as a new paradigm for processing and storing large amounts of data. The rapid increase in the number of mobile phones and IoT devices benefitingfrom cloud computing services reduces the Internet bandwidth, resulting in delays in delivering data processed on remote cloud servers to the user. Mobile devices use edge computing systems (cloudlet, fog computing, etc.) to overcome resource shortages, power consumption and delays in communication channels. Edge computing systems place processing devices (cloudlets) close to users. The closer the cloudlets to mobile devices, the lower the processing time and energy consumption of the mobile device, and the higher the bandwidth of communication channels. Thus, cloudlet-based mobile computing clouds are widely used to reduce the latency in the Internet communication channels and energy consumption on mobile devices. This article identifies the most popular places for cloud servers in metropolitan mobile networks and discusses the optimal placement of a limited number of cloudlets in those places.
Keywords: mobile cloud computing, edge computing, cloudlet, energy consumption, communication channel, network delays, communication channel bandwidth
P. 182–188
References
- Fesehaye D., Gao Y., Nahrstedt K., Wang G. Impact of cloudlets on interactive mobile cloud applications, IEEE 16th International Enterprise Distributed Object Computing Conference (EDOC), 2012, pp. 123—132.
- Satyanarayanan M., Bahl P., Caceres R., Davies N. The case for vm-based cloudlets in mobile computing, IEEE pervasive Computing, 2009, vol. 8, no. 4, pp. 14—23.
- Sarddar D., Bose R. A Mobile Cloud Computing Architecture with Easy Resource Sharing, International Journal of Current Engineering and Technology, 2014, vol. 4, no. 3, pp. 1249—1254.
- Mathur R. P., Sharma M. A survey on computational offloading in mobile cloud computing, 2019 Fifth International Conference on Image Information Processing, pp. 525—520, available at: https://doi.org/10.1109/ICIIP 47207.
- Yuyi M., You C., Zhang J., Huang K., Letaief K. A survey on mobile edge computing: The communication perspective, IEEE Communications Surveys & Tutorials, 2017, vol. 19, no. 4, pp. 2322—2358.
- Nasir A., Zhang Y., Taherkordi A., Skeie T. Mobile edge computing: A survey, IEEE Internet of Things Journal, 2017, vol. 5, no. 1, pp.450—465.
- Ahmed E., Gani A., Khan M. K., Buyya R., Khan S. U. Seamless application execution in mobile cloud computing: motivation, taxonomy, and open challenges, Journal of Network and Computer Applications, 2015, vol. 52, pp. 154—172.
- Muneera A., Al-Ayyoub M., Jararweh Y., Tawalbeh L., Benkhelifa E. Power optimization of large scale mobile cloud system using cooperative cloudlets, IEEE 4th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW), 2016, pp. 34—38.
- Bashir A., Sholla S. Resource Efficient Security Mechanism for Cloud of Things, I. J. Wireless and Microwave Technologies, 2021, vol. 4, pp. 41—45.
- Mathur R. P., Sharma M. A survey on computational offloading in mobile cloud computing, Fifth International Conference on Image Information Processing, 8985893, 2019, pp. 525—520, available at: https://doi.org/10.1109/ICIIP 47207.
- Ahmed E., Akhunzada A., Whaiduzzaman M., Gani A., Ab Hamid S. H., Buyya R. Network-centric performance analysis of runtime application migration in mobile cloud computing, Simul Model Pract Theory, 2015, vol. 50, pp. 42—56.
- Jia M., Liang W., Xu Z., Huang M. Cloudlet Load Balancing in Wireless Metropolitan Area Networks, IEEE INFOCOM 2016 — The 35th Annual IEEE International Conference on Computer Communications, pp. 1—9.
- Somula R. S., Ra S. A survey on mobile cloud computing: Mobile Computing + Cloud Computing (MCC = MC + CC), Scalable Computing: Practice and Experience, 2018, vol. 19, no. 4, pp. 309—337.
- Kovtun V., Izonin I., Gregus M. Mathematical models of the information interaction process in 5G-IoT ecosystem: Different functional scenarios, ICT Express, 2021, pp. 1—6, available at: https://doi.org/10.1016/j.icte.2021.11.008.
- Boukerche A., Guan S., De Grand R. E. Sustainable Offloading in Mobile Cloud Computing: Algorithmic Design and Implementation, ACM Computing Surveys, 2020, vol. 52, no. 11, pp. 1—37, available at: https://doi.org/10.1145/3286688.
- Alekberov R. K. Strategy for reducing delays and energy consumption in cloudlet- based mobile cloud computing, International Journal of Wireless Networks and Broadband Technologies, 2021, vol. 10, pp. 32—44.
- Shreya G., Mukherjee A., Ghosh S., Buyya R. Mobi-IoST: mobility-aware cloud-fog-edge-iot collaborative framework for time-critical applications, IEEE Transactions on Network Science and Engineering, 2019, pp. 1—15.
- Akomolafe O. P., Abodunrin M. O. A Hybrid Cryptographic Model for Data Storage in Mobile Cloud Computing, I. J. Computer Network and Information Security, 2017, no. 6, pp. 53—60.
- Qayyum R., Ejaz H. Data Security in Mobile Cloud Computing: A State of the Art Review, I. J. Modern Education and Computer Science, 2020, vol. 2, pp. 30—35, DOI: 10.5815/ijmecs.2020.02.04
- Alekberov R. G., Alekperov O. R. Procedure of effective use of cloudlets in wireless metropolitan area network environment, International Journal of Computer Networks & Communications (IJCNC), 2019, vol. 11, no. 1, pp. 93—107.
- Yan G., Wang S., Zhou A., Xu J., Yuan J., Hsu C. User allocation-aware edge cloud placement in mobile edge computing, Software: Practice and Experience, 2020, vol. 50, no. 5, pp. 489—502.
- Sachula M., Wang Y., Miao Z., Sun K. Joint optimization of wireless bandwidth and computing resource in cloudlet-based mobile cloud computing environment, Peer-to-Peer Networking and Applications, 2018, vol. 11, no. 3, pp. 462—472.
- Shakerkhan K. O., Abilmazhinov E. T. Development of a Method for Choosing Cloud Computing on the Platform of Paas for Servicing the State Agencies, I. J. Modern Education and Computer Science, 2019, vol. 9, pp. 14—25.
- Hassan R., Yazdani N., Shojaee R. Modeling and performance analysis of cloudlet in Mobile Cloud Computing, Performance Evaluation, 2017, vol. 107, pp. 34—53.
- Mora H., Gimeno M., Signes-Pont M. T., Volckaert B. Multilayer Architecture Model for Mobile Cloud Computing Paradigm, Complexity, 2019, vol. 2, pp. 1—13.
- Ceselli A., Premoli M., Secci S. Mobile Edge Cloud Network Design Optimization, IEEE/ACM Transactions on Networking, 2017, vol. 25, no. 3, pp. 1818—1831.
- Zhu X., Yang L. T., Chen H., Wang J., Yin S., Liu X. Real Time Tasks Oriented Energy-Aware Scheduling in Virtualized Clouds, IEEE Trans. Cloud Computing, 2017, vol. 2, no. 2, pp. 168—180.
- Mam M., Leena G., Saxena N. S. Improved k-means clustering based distribution planning on a geographical network, International Journal of Intelligent Systems and Applications, 2017, vol. 9, no. 4, pp. 69—75.
- Menzhevickij V. S., Sokolova M. G., Shimanska N. N. Solving problems on a topographic map. Xcizan, Teaching aid, 2015, 62 p.
- Stewart J. Calculus: Early Transcendentals, 7th Edition, 2012
To the contents |
|