main| new issue| archive| editorial board| for the authors| publishing house|
Ðóññêèé
Main page
New issue
Archive of articles
Editorial board
For the authors
Publishing house

 

 


ABSTRACTS OF ARTICLES OF THE JOURNAL "INFORMATION TECHNOLOGIES".
No. 2. Vol. 29. 2023

DOI: 10.17587/it.29.104-112

N. A. Ignatev, D. Sc., Professor,
National University of Uzbekistan, Tashkent, Uzbekistan,
E. N. Zguralskaya, Assistant Professor,
Ulyanovsk State Technical University, Ulyanovsk, Russian Federation,
M. V. Markovtseva
, Assistant Professor, Ulyanovsk State University, Ulyanovsk, Russian Federation

Correction of the Values of the Classification Feature of Objects on the Example of the Diagnosis of Multiple Myeloma

The clinical features of changes in multiple myeloma indicators of different types associated with the gender of patients (objects) are considered. The methods of data mining examine the truth of the statement about the presence of many patients for whom gender is not significant in making a diagnosis. It is proposed to use the preprocessing of heterogeneous data to unify the description of objects in the binary space. The conditions for selecting and removing noise features from the set are determined. In order to reduce the dimensionality of the space, latent features are calculated by groups of binary generalized estimates of objects. A criterion is proposed for dividing patients into the optimal number of groups, taking into account their gender authenticity. From these groups, a new classification of objects is formed, differentiated by gender. The formation process is illustrated through the visualization of object descriptions, recognition accuracy and selection of informative feature sets according to the new classification. The selection procedure is implemented according to the rules of a hierarchical agglomerative algorithm. The property of invariance to the measurement scales of quantitative traits is an important argument for using the obtained results on data samples from the general population.
Keywords: latent features, cluster analysis, feature persistence, pooled scores, object relatedness relationship, multiple myeloma

P. 104–112

References

  1. Mendeleeva L. P., Votyakova O. M., Pokrovskaya O. S. National clinical guidelines for the diagnosis and treatment of multiple myeloma, Gematologiya i transfuziologiya, 2016, no. 1(2), pp. 1—24 (in Russian).
  2. Belaya Zh. E., Belova K. Yu., Biryukova E. V., Dedov I. I., Dzeranova L. K., Drapkina O. M., Dreval A. V., Dubovits-kaya T. A., Dudinskaya E. N., Ershova O. B., Zagorodniy N. V., Ilyukhina O. B., Kanis J. A., Kryukova I. V., Lesnyak O. M., Mamedova E. O., Marchenkova L. A., Melnichenko G. A., Ni-kankina L. V., Nikitinskaya O. A., Petryaikin A. V., Pigarova E. A., Rodionova S. S., Rozhinskaya L. Ya., Skripnikova I. A., Tar-baeva N. V., Tkacheva O. N., Toroptsova N. V., Farba L. Ya., Tsoriev T. T., Chernova T. O., Yureneva S. V., Yakushevskaya O. V. Federal clinical guidelines for the diagnosis, treatment and prevention of osteoporosis, Osteoporoz i osteopatii, 2021, vol. 24, no. 2, pp. 4—47 (in Russian).
  3. Qaseem A., Forciea M., McLean R., Denberg T. Treatment of Low Bone Density or Osteoporosis to Prevent Fractures in Men and Women: A Clinical Practice Guideline Update From the American College of Physicians, Ann Intern Med., 2017, no. 166(11), pp. 818—839.
  4. Kanis J. A. European guidance for the diagnosis and man­agement of osteoporosis in postmenopausal women, Osteoporosis international, 2013, no. 24(1). pp. 23—57.
  5. Saidov D. Y. Data visualization and its proof by compact­ness criterion of objects of classes, International Journal of Intelligent Systems and Applications, 2017, no. 9(8), pp. 51—58.
  6. Ignatiev N. A. Calculation of generalized indicators and data mining, Avtomatika i telemekhanika, 2011, no. 5, pp. 183—190 (in Russian).
  7. Ignatiev N. A. On Nonlinear Transformations of Features Based on the Functions of Objects Belonging to Classes, Pattern Recognit. Image Anal., 2021, vol. 31, pp. 197—204.
  8. Ignatiev N. A., Rakhimova M. A. Formation and analysis of sets of informative features of objects by class pairs, Iskusstvennyj intellekt i prinyatie reshenij, 2021, no. 4, pp. 18—26 (in Russian).
  9. Ignatiev N. A., Rakhimova M. A., Lolaev M. Ya. Features of the selection of informative feature sets on missing data, Problemy vychislitel'noj iprikladnoj matematiki, 2021, no. 6(37), pp. 113—122 (in Russian).
  10. Maaten L. Visualizing High-Dimensional Data Using t-SNE, Journal of Machine Learning Research, 2008, no. 9, pp. 2579—2605.
  11. Zguralskaya E. N. Stability of splitting data into intervals in recognition problems and searching for hidden patterns, Izvestiya Samarskogo nauchnogo centra Rossijskoj akademii nauk, 2018, no. 20(4), pp. 451—455 (in Russian).
  12. Mirzaev A. I. On the choice of space for describing objects in machine learning on large data samples. Problemy vychislitel'noj iprikladnoj matematiki, 2021, no. 6(36), pp. 120—127 (in Russian).
  13. Selecting the number of clusters with silhouette analysis on KMeans clustering, available at: https://scikit-learn.org/sta-ble/auto_examples/cluster/plot_kmeans_silhouette_analysis.html (date of access 01.06.2022).
  14. Rakhimova M. A. On the quantitative assessment of the state of health by age groups, In: 3rd International book edition of the countries of the Independent States. Best Young Scientist, NurSultan 2021, pp. 73—77 (in Russian).


To the contents