DOI: 10.17587/prin.16.547-557
Software Platform for Unmanned Devices Control Systems Creating with Configurable Architecture and Algorithms
V. M. Grinyak, Dr. Sci. of Engineering Sciences, Professor, victor.grinyak@gmail.com,
Vladivostok State University, Vladivostok, 690014, Russian Federation,
K. S. Shutov, Postgraduate Student, con.shutoff@yandex.ru,
Far Eastern Federal University, Vladivostok, 690922, Russian Federation,
A. V. Artemyev, Ph.D. in Engineering Sciences, Associate Professor, artemyev@msun.ru,
Maritime State University, Vladivostok, 690059, Russian Federation,
A. S. Devyatisilnyi, Dr. Sci. of Engineering Sciences, Principal Researcher, devyatis@iacp.dvo.ru, Institute of Automation and Control Processes, Vladivostok, 690041, Russian Federation
Corresponding author: Viktor M. Grinyak, Dr. Sci. of Engineering Sciences, Professor, Vladivostok State University, Vladivostok, 690014, Russian Federation, E-mail: victor.grinyak@gmail.com
Received on May 19, 2025
Accepted on July 08, 2025
The paper presents a developed software platform for controlling unmanned devices with the ability to dynamically change algorithms and control modes without the need to stop work or flash the equipment. The main purpose of creating this system is to ensure flexible adaptation of unmanned devices to changing operating conditions and tasks performed. The software solution is based on a modular architecture that includes four key subsystems: subsystem for generating control commands, subsystem for executing control commands, subsystem for linking software and hardware components, and subsystem for configuration. A specialized declarative configuration description language based on an XML-like grammar has been developed for the last one, which makes it easy to integrate and modify controls.
The developed system was implemented on a Raspberry Pi 4 single-board computer and demonstrated high stability and performance during field tests. The experiments carried out have shown the possibility of rapid switching between different control algorithms depending on external conditions, including using visual recognition of colored lines. The architecture of the solution provides asynchronous command processing, resistance to communication loss and high execution speed — up to 83 commands per second. The platform is versatile and can be used for a wide range of unmanned devices, while providing flexibility, reliability and extensibility of control systems.
Keywords: unmanned device, drone, control system, software platform, software architecture, control mode, control algorithm, control command, configuration
pp. 547—557
For citation:
Grinyak V. M., Shutov K. S., Artemyev A. V., Devyatisilnyi A. S. Software Platform for Unmanned Devices Control Systems Creating with Configurable Architecture and Algorithms, Programmnaya Ingeneria, 2025, vol. 16, no. 11, pp. 547—557. DOI: 10.17587/prin.16.547-557. (in Russian).
References:
- Veresnikov G. S., Skryabin A. V. Artificial intelligence methods in automated unmanned aerial vehicles control systems, Informacionnye tehnologii, 2024, vol. 30, no. 3, pp. 115—123. DOI: 10.17587/it.30.115-123 (in Russian).
- Moskalenko M. A., Cherniakhovich S. E., Pushkarev I. I., Titov A. V. Autonomous shipping technologies, trends and prospects, Marine intellectual technologies, 2023, no. 1—1 (59), pp. 18—28. DOI: 10.37220/MIT.2023.59.1.001 (in Russian).
- Jensen K., Larsen M., Nielsen S. H. et al. Towards an Open Software Platform for Field Robots in Precision Agriculture, Robotics, 2014, no. 3, pp. 207—234. DOI: 10.3390/robotics3020207.
- Rodriguez F. S., Diego B. C., Rodilla V. M. et al. The complete integration of MissionLab and CARMEN, International Journal of Advanced Robotic Systems, 2017, vol. 14, no. 3. DOI: 10.1177/1729881417703565.
- Collett T. H. J., MacDonald B. A., Gerkey B. Player 2.0: Toward a Practical Robot Programming Framework, Proceedings of the Australasian conference on robotics and automation (ACRA 2005), 2005.
- Pan Z., Cao Y., Yang D. et al. Architecture and Design of Unmanned Sailboat Control System with Open Source, Accessibility and Reliability, 2021 IEEE International Conference on Unmanned Systems (ICUS), 2021, pp. 520—526. DOI: 10.1109/ICUS52573.2021.9641340.
- Bigazzi L., Basso M., Boni E et al. A Multilevel Architecture for Autonomous UAVs, Drones, 2021, vol. 5, no. 55. DOI: 10.3390/drones5030055.
- Petrishchev E. A. Algorithms for Route Planning and Navigation of Unmanned Aerial Vehicles, Programmnaya Ingeneria, 2024, vol. 15, no. 7, pp. 352—361. DOI: 10.17587/prin.15.352-361 (in Russian).
- Popov A. S., Usmonov E. M., Sukhachev N. V. Method of navigation of unmanned aerial vehicles based on technical vision system, Transport: nauka, tekhnika, upravleniye, 2022, no. 2, pp. 11—19. DOI: 10.36535/0236-1914-2022-02-2 (in Russian).
- Ali B., Sadekov R. N., Tsodokova V. V. A review of navigation algorithms for unmanned aerial vehicles based on computer vision systems, Gyroscopy and Navigation, 2022, vol. 13, no. 4, pp. 241—252. DOI: 10.1134/S2075108722040022 (in Russian).
- Chekanov K. A. Algorithms of runway detection in video images in neural network based UAV landing, Gyroscopy and Navigation, 2025, vol. 33, no. 1, pp. 241—252.
- Kuznetsov N. V., Rivkin B. S. Neural networks in ship navigation, Gyroscopy and Navigation, 2025, vol. 33, no. 1, pp. 3—35 (in Russian).
- Kovalenko A. M., Shejnikov A. A. Model of the inertial and optical navigation system of the unmanned aerial vehicle, System analysis and appliied information science, 2020, no. 2, pp. 17—25. DOI: 10.21122/2309-4923-2020-2-17-25 (in Russian).
- Epikhin A. I., Heckert E. V., Modina M. A. Analysis of the safety of unmanned vessels based on the structure of the Bayes networkbased risk model, Marine intellectual technologies, 2021, no. 2-4 (52), pp. 38—46. DOI: 10.37220/MIT.2021.52.2.067 (in Russian).
- Bratic K., Pavic I., Vuksa S., Stazic L. Review of Autonomous and Remotely Controlled Ships in Maritime Sector, Transactions on Maritime Science, 2019, vol. 8, no. 5, pp. 253—265. DOI: 10.7225/toms.v08.n02.011.
- Pokusaev O. N., Kupriyanovsky V. P., Katzin D. V., Namiot D. V. On ontology and security of autonomous (driverless) cars, International Journal of Open Information Technologies, 2019, vol. 7, no. 2, pp. 81—93 (in Russian).
- Blagoveshchenskaya M. M., Ngongang R. D., Blagoveshchenskiy I. G. Structure of project XML format, Informatizatsiya i avtomatizatsiya v pishchevoi promyshlennosti: Sbornik nauchnykh dokladov Vserossiiskoi nauchno-tekhnicheskoi konferentsii, Moscow, 18.05.2022, Kursk, Universitetskaya kniga, 2022, pp. 109—115.
- Shutov K. S., Grinyak V. M., Artemyev A. V. Hardware-software prototype of an unmanned vehicle combining autonomous and controlled modes of operation, The Territory of New Opportunities, The Herald of Vladivostok State University, 2024, vol. 16, no. 2 (70), pp. 135— 150. DOI: 10.24866/VVSU/2949-1258/2024-2/135-150 (in Russian).
- Grinyak V. M., Shutov K. S., Devyatisilnyi A. S., Artemyev A. V. Autonomous vehicle motion control along a program trajectory based on machine learning, Neurocomputers, 2025, vol. 27, no. 1, pp. 66—76. DOI: 10.18127/J19998554-202501-06 (in Russian).
- Peldszus S., Brugali D., Struber D. et al. Software Reconfiguration in Robotics, Empirical Software Engineering, 2025, vol. 30, no. 94. DOI: 10.1007/s10664-024-10596-9.
- Canelas P., Schmerl B., Fonseca A., Timperley C. S. Understanding Misconfigurations in ROS: An Empirical Study and Current Approaches, ISSTA 2024: Proceedings of the 33rd ACM SIG-SOFT International Symposium on Software Testing and Analysis, 2024, pp. 1161—1173. DOI: 10.1145/3650212.3680350.
- Kovalev M. A., Ovakimyan D. N. Bespilotnye letatel'nye ap-paraty vertikal'nogo vzleta: sborka, nastroika i programmirovanie: uch. posobie, Samara, Izd-vo Samarskogo universiteta, 2023, 96 p. (in Russian).
- Ayaida M., Messai N., Valentin F., Marcheras D. Talk-RoBots: A Middleware for Robotic Systems in Industry 4.0, Future Internet, 2022, vol. 14, no. 109. DOI: 10.3390/fi14040109.
- Nosarau I. N., Savchits A. G., Tatur M. M., Pertsau D. Yu. Open architecture of the control system of a mobile robotic platform: from ontology to technical solution, Tsi-frovizatsiya sel'skogo khozyaistva: materialy 4-i Mezhdunar. nauch. konf. po tsifrovizatsii sel'skogo khozyaistva i organicheskomu proizvodstvu, Minsk, 5—8 June 2024, Minsk, Belaruskaya navuka, 2024, pp. 110—123 (in Russian).