DOI: 10.17587/prin.16.480-488
Optimization of Thermodiffusion Calculations Using a Thermal Mirror
M. Raad, Postgraduate Student, m.raad@hotmail.com,
Bauman Moscow State Technical University, Moscow, 105005, Russian Federation
Corresponding author: Majd Raad, Postgraduate Student, Bauman Moscow State Technical University, Moscow, 105005, Russian Federation, E-mail: m.raad@hotmail.com
Received on May 08, 2025
Accepted on June 18, 2025
This paper presents an innovative method for optimizing thermodiffusion calculations in solids using the concept of a thermal mirror and symmetry. The developed approach significantly reduces computational costs by applying the Delaunay algorithm and the finite element method (FEM) for mesh generation and thermal problem solving. The study demonstrates that accounting for the symmetry of geometric shapes and heat sources enables a reduction number of computations by a factor of 2n (where n is the number of symmetry levels) without sacrificing accuracy. The practical implementation of the method in the MFEMS system confirmed its effectiveness, achieving significant reductions in mesh generation time and acceleration of thermodiffusion calculations. Method limitations include imperfect symmetry of real-world objects, distortion of temperature fields under asymmetrical heat sources, and the high computational complexity of symmetry determination. Despite these, the method remains effective for systems with pronounced symmetry, providing an optimal balance between accuracy and computational cost. The results have significant potential for application in the design of heat exchange systems requiring high-precision and resource-efficient simulation methods.
Keywords: thermodiffusion in solids, thermal mirror, symmetry in thermal calculations, optimization of thermal processes, finite element method (FEM), delaunay algorithm, numerical heat transfer simulation, computational efficiency, symmetry analysis, heat exchange systems, thermal conductivity, reduction of computational cost, accuracy enhancement
pp. 480—488
For citation:
Raad M. Optimization of Thermodiffusion Calculations Using a Thermal Mirror, Programmnaya Ingeneria, 2025, vol. 16, no. 9, pp. 480—488. DOI: 10.17587/prin.16.480-488 (in Russian).
References:
- Skvortsov A. Delaunay triangulation and its applications, Tomsk, Izd-vo Tomskogo un-ta, 2002, 128 p. DOI: 10.17273/BOOK.2002.1 (in Russian).
- Bergheau J.-M., Fortunier R. Finite Element Simulation of Heat Transfer. Hoboken, NJ, USA, John Wiley & Sons, 2013. DOI: 10.1002/9780470611418.
- Miller W. Symmetry Groups and Their Applications, London, UK, Academic Press, 1972, 275 p.
- Liu X., Hel-Or H., Kaplan C. S., van Gool L. Computational Symmetry in Computer Vision and Computer Graphics, Found. Trends Comput. Graph. Vis., 2009, vol. 5, pp. 1—195. DOI: 10.1561/0600000008.
- Martin G. E. Transformation Geometry, New York, NY, USA, Springer, 1982, 211 p.
- Barker W. H., Howe R. Continuous Symmetry: From Euclid to Klein. Providence, RI, USA, American Mathematical Society, 2007.
- Xiao Z., Wu J. Analysis on Image Symmetry Detection Algorithms, Proc. Fourth Int. Conf. on Fuzzy Systems and Knowledge Discovery (FSKD 2007), 24—27 Aug. 2007. Haikou, China, 2007, pp. 745—750. DOI: 10.1109/FSKD.2007.173.
- Mitra N. J., Pauly M., Wand M., Ceylan D. Symmetry in 3D Geometry: Extraction and Applications, Comput. Graph. Forum, 2013, vol. 32, no. 6, pp. 1—23. DOI: 10.1111/cgf.12010.
- Bartalucci U., Governi L., Volpe Y. A Survey of Methods for Symmetry Detection 3D High Point Density Models in Bio-medicine, Symmetry, 2018, vol. 10, no. 7, article 263. DOI: 10.3390/sym10070263.
- Tate S. J., Jared G. E. Recognising symmetry in solid models, Comput.-Aided Des., 2003, vol. 35, no. 7, pp. 673—692. DOI: 10.1016/S0010-4485(02)00093-3.
- Martinet A., Soler C., Holzschuch N., Sillion F. X. Accurate detection of symmetries in 3D shapes, ACM Trans. Graph. (TOG), 2006, vol. 25, no. 2, pp. 439—464. DOI: 10.1145/1138450.1138462.
- Li H., Fu H., Cohen-Or D. Symmetry Detection and Analysis with Topological Structures, ACM Trans. Graph. (TOG), 2010, vol. 29, no. 3, article 43.
- Pauly M., Mitra N. J., Wallner J. et al. Discovering Structural Regularity in 3D Geometry, ACM Trans. Graph. (TOG), 2008, vol. 27, no. 3, article 43. DOI: 10.1145/1360612.1360642.
- Cicconet M., Hildebrand D. G., Elliott H. Finding mirror symmetry via registration, arXiv preprint, 2016, arXiv:1611. 05971.
- Tarini M., Cignoni P., Montani C., Rocchini C. A survey on mesh simplification algorithms, Eurographics — STARs., 2006, p. 31—50.
- Wang W., Pan W., Dai C. et al. Segmentation-driven feature-preserving mesh denoising, The Visual Computer, 2024, vol. 40, no. 9, pp. 6201—6217. DOI: 10.1007/s00371-023-03161-w.
- Kwatra V., Essa I., Bobick A., Kwatra N. Texture optimization for example-based synthesis, ACM, Trans. Graph. (TOG), 2005, vol. 24, no. 3, pp. 795—802. DOI: 10.1145/1073204.1073263.
- Mitra N. J., Guibas L. J., Pauly M. Partial and approximate symmetry detection for 3D geometry, ACM Trans. Graph. (TOG), 2006, vol. 25, no. 3, pp. 560—568. DOI: 10.1145/1141911.1141924.
- Medioni G., Tang C. K., Lee M. S. Tensor voting: Theory and applications, Proc. RFIA, 2000, vol. 2000, pp. 1—10, available at: https://www.sci.utah.edu/~gerig/CS7960-S2010/handouts/Medioni_tensor_voting.pdf.
- Tang C. K., Medioni G., Lee M. S. N-dimensional tensor voting and application to epipolar geometry estimation, IEEE Trans. Pattern Anal. Mach. Intell., 2001, vol. 23, no. 8, pp. 829—844. DOI: 10.1109/34.946987.
- Ji P., Liu X. A fast and efficient 3D reflection symmetry detector based on neural networks, Multimed. Tools Appl., 2019, vol. 78, pp. 35471—35492. DOI: 10.1007/s11042-019-08043-9.
- Kanwal K., Ahmad K. T., Khan R. et al. Deep learning using symmetry, FAST scores, shape-based filtering and spatial mapping integrated with CNN for large scale image retrieval, Symmetry, 2020, vol. 12, no. 4, article 612. DOI: 10.3390/sym12040612.