Journal "Software Engineering"
a journal on theoretical and applied science and technology
ISSN 2220-3397

Issue N1 2025 year

DOI: 10.17587/prin.16.39-46
Implementation of a Feedback System for Myoelectric Prostheses of the Upper Limb
Ya. A. Turovsky1,2, Associate Professor, Leading Researcher, yaroslav_turovsk@mail.ru, S. V. Borzunov1, Associate Professor, borzunov@cs.vsu.ru, S. S. Krupenin1, Postgraduate Student, semyon.krupenin@bk.ru, A. P. Mironkin1, Postgraduate Student, artemmironkin17@yandex.ru, R. A. Tokarev1, Magistrate, tokarev0801@mail.ru
1 Voronezh State University, Voronezh, 394018, Russian Federation,
2 Russian Academy of Sciences, Moscow, 117997, Russian Federation
Corresponding author: Yaroslav A. Turovsky, Associate Professor, Leading Researcher, Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow, 117997, Russian Federation, E-mail: yaroslav_turovsk@mail.ru
Received on October 18, 2024
Accepted on November 19, 2024

The feedback system is presented in the aspect of its software and hardware support, necessary for the synthesis of such an information system as applied to a myoelectric prosthesis. The most successful configurations of sensors, micro­controllers, actuators from the standpoint of software and hardware implementation are defined and designed. Approaches to the installation and location of tactile actuators on the surface of the hand are designed, which determine the optimal number of elements depending on the anatomical features of the stump. Based on this approach, an information system for training the user to work with myoelectric prostheses was created, using virtual reality technology.

Keywords: myographic interface, myographic prosthesis, feedback system
pp. 39—46
For citation:
Turovsky Ya. A., Borzunov S. V., Krupenin S. S., Mironkin A. P., Tokarev R. A. Implementation of a Feedback System for Myoelectric Prostheses of the Upper Limb, Programmnaya Ingeneria, 2025, vol. 16, no. 1, pp. 39—46. DOI: 10.17587/prin.16.39-46 (in Russian).
References:
  1. Federal State Statistics Service, available at: https://rosstat. gov.ru/storage/mediabank/Pr_travm.xlsx (date of access 13.10.2024) (in Russian).
  2. Bondareva L. A., Dunaev A. V. Biotechnical medical systems for therapeutic purposes, OrelGTU, 2005, 66 p. (in Russian).
  3. Sergeev S. V., Minasov B. Sh., Grishanina V. O., Abdul-habirov M. A. History of prosthetics, Mediko-social'nye problemy invalidnosti, 2017, no. 2, pp. 84—89 (in Russian).
  4. Fisenko K. I., Peschkov S. А., Turovsky Ya. A. Information system of tactile and temperature feedback in myoelectric prostheses, Sb. stud. nauchn. rabot fakul'teta komp'yuternyh nauk VGU/ Eds D. N. Bor-isov. Voronezh, ID VGU, 2015, vol. 9, pp. 276—280 (in Russian).
  5. Marasco P. D., Hebert J. S., Sensinger J. W. et al. Illusory movement perception improves motor control for prosthetic hands, Science translational medicine, 2018, vol. 10, no. 432, article eaao6990. DOI: 10.1126/scitranslmed.aao6990.
  6. Turovsky Ya. A., Fisenko K. I., Mamaev A. V. Localization of signals in a tactile feedback system for myoelectric prostheses of the upper limbs, Zhurnal mediko-biologicheskih issledovanij, 2019, no. 1, pp. 56—65 (in Russian).
  7. Proprioceptors closure, available at: https://medbiol.ru/med-biol/anatomia/0007e0da.htm (date of access 16.10.2024).
  8. Zawawi M. A. An optical fibre sensor for physiological bending monitoring in clinical environment: diss. University of Limerick, 2015. 331 р.
  9. Ueda Y., Ishii C. Development of a feedback device of temperature sensation for a myoelectric prosthetic hand by using Peltier element, 2016 International Conference on Advanced Mechatronic Systems (ICAMechS). IEEE, 2016, pp. 488—493. DOI: 10.1109/ICAMechS.2016.7813497.
  10. Chen D., Song A., Tian L. et al. FW-Touch: A finger wearable haptic interface with an MR foam actuator for displaying surface material properties on a touch screen, IEEE transactions on haptics, 2019, vol. 12, no. 3, pp. 281—294. DOI: 10.1109/TOH.2019.2920349.
  11. Morales H., Duran C., Roa E. A Low-Area Direct Memory Access Controller Architecture for a RISC-V Based Low-Power Microcontroller, 2019 IEEE 10th Latin American Symposium on Circuits & Systems (LASCAS), Armenia, Colombia, 2019. pp. 97—100. DOI: 10.1109/LASCAS.2019.8667579.
  12. Hannan E. J., Kavalieris L. A method for autoregressive-moving average estimation, Biometrika, 1984, vol. 71, no. 2, pp. 273—280.