Journal "Software Engineering"
a journal on theoretical and applied science and technology
ISSN 2220-3397

Issue N8 2025 year

DOI: 10.17587/prin.16.379-394
Study of Features of Deterministic Quantum Communication
S. E. Igoshina, Associate Professor, sigoshina@mail.ru, A. A. Karmanov, Associate Professor, starosta07km1@mail.ru, M. A. Mitrokhin, Head of Chair, Associate Professor, Penza State University, Penza, 440026, Russian Federation
Corresponding author: Svetlana E. Igoshina, Associate Professor of Department "Nano- and microelectronics", Penza State University, Penza, 440026, Russian Federation E-mail: sigoshina@mail.ru
Received on March 20, 2025
Accepted on April 22, 2025

A physical and mathematical model and equivalent circuits illustrating the key features of the «quantum telegraph» are presented. The conditions for observing the interference pattern created by particles from a set of entangled pairs as they pass through a screen with two slits and filters are considered. Based on the simulation results, the question of the possibility of observing the interference pattern created by one of the photons of the entangled pair without post-selection of the measurement results is addressed.

Keywords: quantum telegraph, quantum computing, quantum information, non-separable (entangled) states, interference pattern on two slits
pp. 379—394
For citation:
Igoshina S. E., Karmanov A. A, Mitrokhin M. A. Study of Features of Deterministic Quantum Communication, Programmnaya Ingeneria, 2025, vol. 16, no. 8, pp. 379—394. DOI: 10.17587/prin.16.379-394. (in Russian).
The authors express their gratitude for the invaluable experience of joint work and discussion of ideas to Evgeny Anatolyevich Matveyev, who laid the foundations for a new technology for transmitting and receiving data from the field of deterministic quantum communication, called the "Quantum Telegraph".
References:
  1. Matveev E. A. Quantum telegraph, Programmnaya Ingeneria, 2019, vol. 10, no. 7—8, pp. 317—323. DOI: 10.17587/prin.10.317-323 (in Russian).
  2. Kim Y.-H., Yu R., Kulik S. P. et al. Delayed "Choice" Quantum Eraser, Physical Review Letters. 2000, vol. 84, no. 1, pp. 1—5. DOI: 10.1103/PhysRevLett.84.1.
  3. Bienfait A., Zhong Y. P., Chang H.-S. et al. Quantum Erasure Using Entaglent Surface Acoustic Phonons, Physical Review X. 2020, vol. 10, no. 2, article 021055. DOI: 10.1103/Phys-RevX.10.021055.
  4. Guff T., Shastry C. U., Rocco A. Emergence of opposing arrows of time in open quantum systems, Scientific Reports, 2025, vol. 15, no. 1, article 3658. DOI: 10.1038/s41598-025-87323-x.
  5. Angulo D., Thompson K., Nixon V. M. et al. Experimental evidence that a photon can spend a negative amount of time in atom cloud. arXiv:2409.03680 [quant-ph] 5 Sep 2024. DOI: 10.48550/arXiv.2409.03680.
  6. Jacques V. Experimental Realization of Wheeler's Delayed-Choice Gedanken Experiment, Science, 2007, vol. 315, no. 5814, pp. 966—968. DOI: 10.48550/arXiv.quant-ph/0610241.
  7. Dimitrova T. L., Weis A. A. portable double-slit quantum eraser with individual photons, European Journal of Physics, 2011, vol. 32, no. 6, pp. 1535—1546. DOI: 10.1088/0143-0807/32/6/008.
  8. Dimitrova T. L., Weis A. Single photon quantum erasing: a demonstration experiment, European Journal of Physics, 2010, vol. 31, no. 3, pp. 625—637. DOI: 10.1088/0143-0807/31/3/020.
  9. Rioux F. Illustrating the Superposition Principle with Single-Photon Interference, Chem. Educator, 2005, vol. 10, pp. 424—426. DOI: 10.1333/s00897050977a.
  10. Nielsen M., Chang I. Quantum computation and quantum information, Cambridge: Cambridge university press, 2010, 675 p.
  11. Feynman R., Leighton R., Sands M. The Feynman Lectures on Physics. Issue 8,9. Quantum Mechanics, Librokom, 2016, 528 p. (in Russian).
  12. Vinetskaya P. M., Kravtsov K. S., Borshchevskaia N. A. et al. Active basis choice for quantum key distribution with entangled states, Laser Physics Letters, 2023, vol. 20, no. 5, article 055201. DOI: 10.1088/1612-202X/acc246.
  13. Jacques V. Experimental Realization of Wheeler's Delayed-Choice Gedanken Experiment, Science, 2007, vol. 315, no. 5814, pp. 966—968. DOI: 10.1126/science.1136303.
  14. Greene B. The Fabric of the Cosmos: Space, Time, and the Texture of Reality, New-York, Vintage, 2005, 592 p.
  15. Lahiri M., Lapkiewicz R., Hochrainer A. et al. Characterizing mixed state entanglement through single-photon interference, Physical Review A, 2021, vol. 104, no. 1, article 013704. DOI: 10.1103/PhysRevA.104.013704.
  16. Lemos G. B., Lapkiewicz R., Hochrainer A. et al. One-photon measurement of two-photon entanglement, Physical Review Letters, 2023, vol. 130, no. 9, article 090202. DOI: 10.1103/Phys-RevLett.130.090202.
  17. Aliev F. K., Borodin A. M., Vassenkov A. V. et al. ATF communication technology based on the use of the resource of non-separable states of quantum systems, Science-intensive technologies, 2015, vol. 16, no. 1, pp. 65—78 (in Russian).
  18. Aliev F. K., Korolkov A. V., Matveev E. A. Non-separable states of multi-qubit quantum systems / Eds. F. K. Aliev, Moscow, Radio Engineering, 2017, 320 p. (in Russian).