Journal "Software Engineering"
a journal on theoretical and applied science and technology
ISSN 2220-3397

Issue N6 2025 year

DOI: 10.17587/prin.16.292-299
Development of a Test System for MIPI CSI-2 Debugging
S. V. Serebryakov, Junior Researcher, serebryakov-sv@niisi.ras.ru, A. М. Giatsintov, Senior Researcher, Head of Department, giatsintov@niisi.ras.ru, K. А. Mamrosenko, Leading Researcher, Head of Center, mamrosenko_k@niisi.ras.ru, A. G. Vorsin, Engineer, vorsin@cs.niisi.ras.ru, A. Y. Bogdanov, Junior Researcher, aubogdan@cs.niisi.ras.ru, National Research Center "Kurchatov Institute" — SRISA, Moscow, 117218, Russian Federation
Corresponding author: Sergey V. Serebryakov, Junior Researcher, National Research Center "Kurchatov Institute" — SRISA, Moscow, 117218, Russian Federation, E-mail: serebryakov-sv@niisi.ras.ru
Received on March 04, 2025
Accepted on April 15, 2025

When developing a logical structure of interface controllers, debugging complexity and time for creating and simulating test scenarios can negatively affect the performance of the end product. Early verification allows avoiding the accumulation of errors, while using several test methods increases test coverage. The article discusses a new method for designing a test system for debugging complex functional blocks simultaneously with their development. The method features the universality of using bare-metal programs both on an emulator with co-simulation and on a prototyping platform, as well as the possibility to configure a bare-metal program without reassembly. This method allows not to take into account the features of interaction with a specific operating system and various APIs, which simplifies hardware debugging and reduces the time required to check specified capabilities of the IP core. It also discusses assembling and running bare-metal programs, as well as their functional composition for the test system, and co-simulation method for debugging controller RTL model connected to the SoC emulated in the QEMU program. The paper also describes a method for debugging a controller implemented as an FPGA prototype, indicating its advantages and disadvantages. The obtained results of using the test system with bare-metal programs reduces resources needed for writing drivers for operating systems.

Keywords: bare-metal, MIPI D-PHY, CSI-2, Linux, simulation, co-simulation, hardware prototyping, RTL model, QEMU, I2C
pp. 292—299
For citation:
Serebryakov S. V., Giatsintov A. М., Mamrosenko K. А., Vorsin A. G., Bogdanov A. Yu. Development of a Test System for MIPI CSI-2 Debugging, Programmnaya Ingeneria, 2025, vol. 16, no. 6, pp. 292—299. DOI: 10.17587/prin.16.292-299. (in Russian).
Publication is made as part of the research for NRC "Kurchatov Institute" — SRISA on the topic No. FNEF-2024-0003.
References:
  1. Pandey A. K., Jangale A., Narayan S. Signal Integrity and Compliance Test of DSI and CSI-2 Serial Interface over MIPI D-PHY, 2020 IEEE 24th Workshop on Signal and Power Integrity (SPI). Cologne, Germany, IEEE, 2020, pp. 1—4. DOI: 10.1109/SPI48784.2020.9218161.
  2. Lim K., Kim G., Kim S., Baek K.-H. A multi-lane MIPI CSI receiver for mobile camera applications, IEEE Trans. Consumer Electron. 2010, vol. 56, no. 3. pp. 1185—1190. DOI: 10.1109/ TCE.2010.5606244.
  3. Ali A. M., Shalaby A., Saif S., Taher M. A UVM-based Verification Approach for MIPI DSI Low-Level Protocol layer, 2022 International Conference on Microelectronics (ICM). Casablanca, Morocco, IEEE, 2022, pp. 74—77. DOI: 10.1109/ICM56065.2022.10005400.
  4. Malviya U. K., Swain A., Kumar G. Tiny I2C Protocol for Camera Command Exchange in CSI-2: A Review, 2020 International Conference on Inventive Computation Technologies (ICICT). Coimbatore, India, IEEE, 2020, pp. 149—154. DOI: 10.1109/ICICT48043.2020.9112536.
  5. Liu F., Wang L., Yang Y. A UHD MIPI CSI-2 image acquisition system based on FPGA, 2021 40th Chinese Control Con­ference (CCC), Shanghai, China, IEEE, 2021, pp. 5668—5673. DOI: 10.23919/CCC52363.2021.9550077.
  6. Ratheesh Mekkadan. Functional Verification of CSI-2 Rx-PHY using AMS Co-simulations. DVCon: India, 2014.
  7. Seokman Kim, Minseok Oh, Dohyeon Yoo, Kyoungrok Cho Touched image transmission of a high-resolution touch panel using MIPI CSI-2 for kiosk applications, 2017 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, IEEE, 2017, pp. 53—54. DOI: 10.1109/ICCE.2017.7889227.
  8. Shin G.-W., Lee C.-K., Lee Y.-H. Hardware Design of an Interface Supporting Both Camera and Display for Mobile Devices, 2015 4th International Conference on Modeling and Simulation (MAS), Jeju Island, South Korea, IEEE, 2015, pp. 17—20. DOI: 10.1109/MAS.2015.15.
  9. Sony CMOS Image Sensor with Square Pixel for Color Cameras, available at; https://www.opensourceinstruments.com/Electronics/Data/IMX219PQ.pdf.
  10. Kumar U., Rout M., Palipudi A. S. Real Time Video Processing Using Polar Fire FPGA, 2024 First International Conference on Electronics, Communication and Signal Processing (ICECSP), New Delhi, India, IEEE, 2024, pp. 1—5. DOI: 10.1109/ICECSP61809.2024.10698483.
  11. Lu Y.-C., Chen Z.-Y., Chang P.-C. Low power multilane MIPI CSI-2 receiver design and hardware implementations, 2013 IEEE International Symposium on Consumer Electronics (ISCE), Hsinchu City, Taiwan, IEEE, 2013, pp. 199—200. DOI: 10.1109/ISCE.2013.6570183.
  12. Pescari C., Mal R.-A., Silaghi A.-M. D-PHY Interface Characterization by Means of Signal Integrity Simulation, 2023 International Symposium on Signals, Circuits and Systems (ISSCS), Iasi, Romania, IEEE, 2023, pp. 1—4. DOI: 10.1109/ ISSCS58449.2023.10190971.
  13. Giatsintov A., Mamrosenko K., Bazhenov P. Architecture of the Graphics System for Embedded Real-Time Operating Systems, Tsinghua Sci. Technol., 2023, vol. 28, no. 3, pp. 541—551. DOI: 10.26599/TST.2022.9010028.
  14. Vorsin A. G., Shumakov A. V., Petrov K. A., Zubkovsky P. S. Using the cosimulation method in high-performance microprocessors development, Trudy NIISI RAN. 2022, vol. 12, no. 4. pp. 68—72 (in Russian).