Journal "Software Engineering"
a journal on theoretical and applied science and technology
ISSN 2220-3397

Issue N2 2025 year

DOI: 10.17587/prin.16.100-112
Methods and Means of Automated Control of the Asphalt Concrete Mixture Density to Controlling Paver in Process of the Road Surface Construction
A. P. Prokopev, Associate Professor, prok1@yandex.ru, Siberian Federal University, 79 Svobodny pr., Krasnoyarsk, 660041, Russian Federation, A. A. Bolshakov, Professor, aabolshakov57@gmail.com, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, 195251, Russian Federation
Corresponding author: Andrey P. Prokopev, Associate Professor, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation, E-mail: prok1@yandex.ru
Received on August 02, 2024
Accepted on December 18, 2024

The article presents the results of automation of the density continuous control process during laying and compaction of asphalt concrete mixture based on modern information technologies. The process of compaction of the mixture by the paver, accompanied by a continuous change in its physical, chemical and mechanical properties, requires the introduction of a continuously functioning subsystem for predicting of the value mixture density, based on the analysis of signals and digital processing algorithms, into the structure of the automated control system. Therefore, for the software and hardware support of the mixture monitoring density by using various indicators of the degree of compaction, based on the measurement and analysis of signals from sensors, a system has been proposed that solves the problem using a multi-domain approach.

Keywords: automatic control system, multi-domain analysis, machine learning, fuzzy neural network, paver compaction process
pp. 100—112
For citation:
Prokopev A. P., Bolshakov A. A. Methods and Means of Automated Control of the Asphalt Concrete Mixture Density to Controlling Paver in Process of the Road Surface Construction, Programmnaya Ingeneria, 2025, vol. 16, no. 2, pp. 100—112. DOI: 10.17587/prin.16.100-112. (in Russian).
References:
  1. Xu G., Chang G. K., Wang D. et al. The pioneer of in­telligent construction — An overview of the development of intelligent compaction, J. Road Eng., 2022, vol. 2, pp. 348—356. DOI: 10.1016/j.jreng.2022.12.001.
  2. Chen S., Liu X., Luo H., Yu J., Chen F., Zhang Y., Ma T., Huang X. A state-of-the-art review of asphalt pavement surface texture and its measurement techniques, J. Road Eng., 2022, vol. 2, no. 2, pp. 156—180. DOI: 10.1016/j.jreng.2022.05.003.
  3. Xu Y., Zhang Z. Review of applications of artificial intelligence algorithms in pavement management, J. Transp. Eng. Part B-Pavements, 2022, vol. 148, no. 3, article 0000373. DOI: 10.1061/JPEODX.0000373.
  4. Prokop'ev A. P. Cyber-physical system for controlling a squad of road vehicles in infrastructure projects of road transport, Inzhenernyj vestnik Dona, 2022, no. 8, pp. 117—124 (in Russian).
  5. Guan S., Wang J., Wang X., Shi M., Lin W., Chen W. Dynamic hyperparameter tuning-based path tracking control for robotic rollers working on earth-rock dam under complex construction conditions, Autom. Constr., 2022, vol. 143, article 104576. DOI: 10.1016/j.autcon.2022.104576.
  6. Zhang J., Yang X., Wang W. et al. Robust ELM-PID tracing control on autonomous mobile robot via transformer-based pavement crack segmentation, Measurement, 2025, vol. 242, article 116045. DOI: 10.1016/j.measurement. 2024.116045.
  7. Gao Y. PID-based search algorithm: A novel metaheuristic algorithm based on PID algorithm, Expert Systems With Applications, 2023, vol. 232, 120886. DOI: 10.1016/j.eswa.2023.120886.
  8. Prokop'ev A. P., Nabizhanov Zh. I., Ivanchura V. I., Emel'yanov R. T. On the Creation of a System for Continuous Monitoring of Compaction of Road Materials for Pavers, Programmnaya Ingeneria, 2021, vol. 12, no. 8, pp. 413—419. DOI: 10.17587/prin.12.413-419 (in Russian).
  9. Prokop'ev A. P., Nabizhanov Zh. I. Neural network control system for the process of compaction of road materials by pavers, Inzhenernyj vestnik Dona, 2021, no. 10 (in Russian).
  10. Wang Y., Li J., Zhang X. et al. Recent Development in Intelligent Compaction for Asphalt Pavement Construction: Leveraging Smart Sensors and Machine Learning, Sensors, 2024, vol. 24, article 2777. DOI: 10.3390/s24092777.
  11. Makarov I. M., Loxin V. M., Man'ko S. V., Romanov M. P. Artificial Intelligence and Intelligent Control Systems, Moscow, Nauka, 2006, 333 p. (in Russian).
  12. 40 Years of Roller Integrated Continuous Compaction Control (CCC) / Eds. D. Adam, S. Larsson. Symposium Proceedings, Vienna, 2018, 146 p.
  13. Zhang Q., An Z., Huangfu Z., Li Q. A Review on Roller Compaction Quality Control and Assurance Methods for Earthwork in Five Application Scenarios, Materials, 2022, no. 15, article 2610. DOI: 10.3390/ma15072610.
  14. Pistrol J., Hager M., Kopf F. et al. An advanced ICMV for vibratory roller compaction, Acta Geotech, 2024. DOI: 10.1007/s11440-024-02342-8.
  15. Chen S. Y., Zhang J. X., Ni Q. C. et al. Data-Driven Platform Framework for Digital Whole-Process Expressway Construction Management, Front. Neurosci., 2022, no. 16, article 891772. DOI: 10.3389/fnins.2022.891772.
  16. Tyuremnov I. S., Morev A. S. Simulation of different vibration modes of a drum in continuous compaction control systems of soil by vibratory rollers, Lecture Notes in Mechanical Engineering, 2022, pp. 469—476. DOI: 10.1007/978-3-030-85233-7_57.
  17. Sivagnanasuntharam S., Sounthararajah A., Kodikara J. In-situ spot test measurements and ICMVs for asphalt pavement: lack of correlations and the effect of underlying support, Int. J. Pavem. Eng., 2023, vol. 24, no. 1, article 2198770. DOI: 10.1080/10298436.2023.2198770.
  18. Dolatabadi M., Mehrabpour M., Esfandyari M., Alidadi H., Davoudi M. Modeling of simultaneous adsorption of dye and metal ion by sawdust from aqueous solution using of ANN and ANFIS, Chemometrics and Intelligent Laboratory Systems, 2018, vol. 181, pp. 72—78. DOI: 10.1016/j.chemolab.2018.07.012.
  19. Piegat A. Fuzzy Modelling and Control, Heidelberg, 2001, 728 p.
  20. Jang J.-S. R. ANFIS: Adaptive-Network-Based Fuzzy Inference System, IEEE Trans. Systems & Cybernetics, 1993, vol. 23, pp. 665—685. DOI: 10.1109/21.256541.
  21. Management theory (additional chapters) / Eds D. A. Novikova, Moscow, LENAND, 2019, 552 p. (in Russian).
  22. Gao Y. PID-based search algorithm: A novel metaheuristic algorithm based on PID algorithm, Expert Systems With Applications, 2023, vol. 232, article 120886. DOI: 10.1016/j.eswa.2023.120886.
  23. Milostnaya N. A. Stability Study of a Neuro-Fuzzy Output System Based on Ratio Area Method, Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta, 2021, no. 25 (3), pp. 70—85. DOI: 10.21869/2223-1560-2021-25-3-70-85 (in Russian).
  24. Gasnikov A. V. Modern numerical optimization methods. Universal gradient descent method, Moscow, MCzNMO, 2021, 272 p. (in Russian).
  25. Prokop'ev A. P., Emel'yanov R. T., Klimov A. S. Study of the process of compaction of the asphalt concrete mixture along the width of the paving, Stroitel'nye i dorozhnye mashiny, 2009, no. 7, pp. 12—17 (in Russian).
  26. Voznesenskij A. S., Minenkov D. V., Gul'vanskij V. V. et al. Investigation of Window Function Properties in Application to the Synthesis of Digital Filters by the Window Method, Tekhnika sredstv svyazi, 2022, no. 2 (158), pp. 62—68. DOI: 10.24412/2782-2141-2022-2-62-68 (in Russian).
  27. Kandidov V. P., Chesnokov S. S., Shlenov S. A. Discrete Fourier transform, Moscow, Fizicheskij fakul'tet MGU, 2019, 88 p. (in Russian).
  28. Yao Y., Song E. Intelligent compaction methods and quality control, Smart Constr. Sustain. Cities, 2023, vol. 1, no. 2. DOI: 10.1007/s44268-023-00004-4.
  29. Bohmer P. Untersuchunger uber die Verdichtung — swirkung von Schwarzdeckenfertigern, Baumaschine und Bautechnik, 1974, no. 7-8, pp. 233—238.
  30. Prokop'ev A. P., Emel'yanov R. T., Yanaev E. Yu. et al. Field study of the asphalt concrete paving process with automation components of non-destructive compaction testing technology, Inzhenernyj vestnik Dona, 2022, no. 2 (in Russian).
  31. Hizhnyakov Yu. N. Fuzzy, Neural and Hybrid Control, Perm', Izd-vo Perm. nac. issled. politekhn. un-ta, 2013, 303 p. (in Russian).