Journal "Software Engineering"
a journal on theoretical and applied science and technology
ISSN 2220-3397

Issue N2 2024 year

DOI: 10.17587/prin.15.87-96
Hybrid PSO-Jaya Algorithm for Solving Various Optimization Problems
E. M. Kazakova, Junior Researcher, shogenovae@inbox.ru, Institute of Applied Mathematics and Automation KBSC RAS, Nalchik, 360051, Russian Federation
Corresponding author: Elena M. Kazakova, Junior Researcher, Institute of Applied Mathematics and Automation KBSC RAS, 360051, Nalchik, Russian Federation, E-mail: shogenovae@inbox.ru
Received on October 27, 2023
Accepted on November 22, 2023

This article proposes a hybrid algorithm PSO-Jaya, based on two heuristic algorithms — PSO (Particle swarm optimization) and Jaya. The main idea of the PSO-Jaya hybrid algorithm is to use PSO for global research of the solutions space and when PSO ceases to improve the results, which indicates a possible hit in the local optimum, Jaya is connected for the best solution throughout space, taking into account the best solutions already found. This allows the hybrid algorithm to combine efficient exploration of large areas of the solution space with the ability to minimize the probability of hitting local optimum. Two problems are used to evaluate the effectiveness of the PSO-Jaya hybrid algorithm: functions optimization and training artificial neural network for classification task Glass Identification. In calculation tests, the PSO, Jaya, PSO-Jaya algorithms are compared in view of their mean, median, standard deviation and "best" minimum error. In this connection, 50 simulations-based test functions and 30 network simulations were fulfilled. The performance analysis the PSO and Jaya algorithms was carried out as well as the hybrid algorithm for test-based problems. In all test cases, the PSO-Jaya algorithm achieved the best performance in terms of convergence speed and ability to avoid local optimum.

Keywords: heuristic algorithm, optimization, particle swarm optimization (PSO), Jaya, hybrid algorithm, artificial neural network, classification
pp. 87–96
For citation:
Kazakova E. M. Hybrid PSO-Jaya Algorithm for Solving Various Optimization Problems, Programmnaya Ingeneria, 2024, vol. 15, no. 2, pp. 87—96. DOI: 10.17587/prin.15.87-96.DOI: 10.17587/ prin.15.26-34. (in Russian).
References:
    • Kennedy J., Eberhart R. Particle Swarm Optimization, IEE International Conference on Neural Networks, 1995, pp. 1942—1948. DOI: 10.1109/ICNN.1995.488968.
    • Eberhart R., Xiaohui Hu Human tremor analysis using particle swarm optimization, Proceedings of the 1999 congress on evolutionary computation-CEC99, 1999, vol. 3, pp. 1927—1930. DOI: 10.1109/CEC.1999.785508.
    • Hamada M., Hassan M. Artificial neural networks and particle swarm optimization algorithms for preference prediction in multi-criteria recommender systems, Informatics, 2018, vol. 2, no. 5, article 25. DOI: 10.3390/informatics5020025.
    • Asma A., Sadok B. PSO-based dynamic distributed algorithm for automatic task clustering in a robotic swarm, Procedia Computer Science, 2019, vol. 159, pp. 1103—1112. DOI: 10.1016/j.procs.2019.09.279.
    • Rao R. Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems, Int J Indus Eng Comput., 2016, vol. 1, no. 7, pp. 19—34. DOI: 10.5267/j. ijiec.2015.8.004.
    • Warid W., Hizam H., Mariun N., Abdul-Wahab N. I. Optimal power flow using the Jaya algorithm, Energies, 2016, vol. 9, no. 9, article 678. DOI: 10.3390/en9090678.
    • Karpenko A. P. Sovremennyye algoritmy poiskovoy optimizatsii. Algoritmy. vdokhnovlennyye prirodoy. 2nd ed., BMSTU, Moscow, 2017, 446 p. (in Russian).
    • Garg H. A hybrid PSO-GA algorithm for constrained optimization problems, Applied Mathematics and Computation, 2016, vol. 274, pp. 292—305. DOI: 10.1016/j.amc.2015.11.001.
    • Şenel F. A., Gokce F., Yuksel A. S. et al. A novel hybrid PSO—GWO algorithm for optimization problems, Engineering with Computers, 2019, vol. 35, pp. 1359—1373. DOI: 10.1007/s00366-018-0668-5.
    • Zhou Y., Shengyu P. A Hybrid Co-evolutionary Particle Swarm Optimization Algorithm for Solving Constrained Engineering Design Problems, Journal of Computers, 2010, vol. 6, no. 5, pp. 965—972. DOI: 10.4304/jcp.5.6.965-972.
    • Mirjalili S., Hashim S. Z. M. A new hybrid PSOGSA algorithm for function optimization // Proceedings of ICCIA 2010-2010 International Conference on Computer and Information Application. 2010. P. 374—377. DOI: 10.1109/IC-CIA.2010.6141614.
    • Matrenin P. V., Sekaev V. G. Systems Approach to Swarm Intelligence, Programmnaya Ingeneria, 2013, no. 12, pp. 39—45 (in Russian).
    • Liang J. J., Qu B. Y., Suganthan P. N., Hernandez-Diaz A. G. Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization, Computational Intelligence Laboratory, 2013, vol. 34, no. 201212, pp. 281—295.
    • Saymon D. Algoritmy evolyutsionnoy optimizatsii, DMK Press, Moscow, 2020, 1002 p. (in Russian).
    • Mirjalili S. A., Hashim S. Z. M., Sardroudi H. M. Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm, Applied Mathematics and Computation, 2012, vol. 22, no. 218, pp. 11125—11137. DOI: 10.1016/j.amc.2012.04.069.
    • Junior F. E. F., Yen G. G. Particle swarm optimization of deep neural networks architectures for image classification, Swarm and Evolutionary Computation, 2019, vol. 49, pp. 62—74. DOI: 10.1016/j.swevo.2019.05.010.
    • Garro B. A., Vazquez R. A. Designing artificial neural networks using particle swarm optimization algorithms, Computational intelligence and neuroscience, 2015, vol. 2015, article ID 369298. DOI: 10.1155/2015/369298.
    • Zhang J. R., Zhang J., Lok T. M., Lyu M. R. A hybrid particle swarm optimization—back-propagation algorithm for feedforward neural network training, Applied mathematics and computation, 2007, vol. 2, no. 185, pp. 1026—1037.
    • German B. Glass Identification. UCI Machine Learning Repository, 1987, DOI: 10.24432/C5WW2P.