Journal "Software Engineering"
a journal on theoretical and applied science and technology
ISSN 2220-3397

Issue N11 2024 year

DOI: 10.17587/prin.15.570-577
Application of UVM Methodology to Modeling Precision Digital Signal Processing Devices
I. E. Tarasov, Head of Laboratory of Specialized Computing Systems, ilya_e_tarasov@mail.ru, RTU MIREA, Moscow, 119454, Russian Federation
Corresponding author: Ilya E. Tarasov, Head of Laboratory of Specialized Computing Systems, RTU MIREA, Moscow, 119454, Russian Federation E-mail: ilya_e_tarasov@mail.ru
Received on August 02, 2024
Accepted on September 10, 2024

The purpose of the article is to analyze the Universal Verification Methodology (UVM) approach and develop its modification for modeling precision digital signal processing devices as part of periodic signal phase meters. The article proposes a partial implementation of UVM techniques and methods based on general-purpose programming languages, which is distinguished by the presence of a subsystem for metrological evaluation of the characteristics of the simulated measuring device, while the UVM approach, implemented in the Accelera class library in the System Verilog language, assumes the presence of a reference response with which comparison is made. Thus, the proposed approach, while preserving the methodological basis of UVM, allows modifying it for use in systems where the reference response is not assumed, since it is the subject of the study.

Keywords: modelling, measurement, phase, wavelet analysis, digital signal processing
pp. 570—577
For citation:
Tarasov I. E. Application of UVM Methodology to Modeling Precision Digital Signal Processing Devices, Programmnaya Ingeneria, 2024, vol. 15, no. 10, pp. 570—577. DOI: 10.17587/prin.15.570-577. (in Russian).
This work is supported by the Ministry of Science and Education of RF (Project No. FSFZ-2022-0004).
References:
  1. Mallat S. A Wavelet Tour of Signal Processing. The Sparse Way. Third Edition, Academic Press, 2008, 700 p.
  2. Potekhin D. S. Prikladnaya theoriya sinteza system obrabotki informacii na baze orthogonalnyh wavelet-filtrov: specialnost 05.13.01 "Sistemnyi analiz i obrabotka informacii": diss. d-ra techn. nauk. Serpukhov, 2012. 168 p. (in Russian).
  3. Teterin E. P., Potekhin D. S., Tarasov I. E., Volgin A. V. Rapid analysis of liquid quality, Himicheskoe i neftegazovoe mashi-nostroenie, 1999, no. 3, pp. 21—22.
  4. Potekhin D. S., Tarasov I. E., Khrenov M. A. et al. Shirikopolosny spectroanalizator realnogo vremeni s ispolzovaniem wavelet-analiza na baze PLIS Xilinx, Trudy XXI naucnoi konferencii po radiofizike, Nizhniy Novgorod, 15—22 May 2017, Nizhniy Novgorod, Nacionalny issledovatelskiy Nizhegorodskiy gosudarstvenniy uni-versitet im. N. I. Lobachevskogo, 2017, pp. 505—507 (in Russian).
  5. Bernardino A., Jose Santos V. A Real-Time Gabor Primal Sketch for Visual Attention, IBPRIA — 2nd Iberian Conference on Pattern Recognition and Image Analysis, Estoril, Portugal, June 7—9 2005, pp. 335—342.
  6. Cohen M. X. A better way to define and describe Morlet wavelets for time-frequency analysis. bioRxiv 397182. DOI: 10.1101/397182.
  7. Smirnov A. V. Optimizaciya kharacteristik cifrovyh filtrov odnovremenno v chastotnoi i vremennoi oblastyakh, Russian Technological Journal, 2020, vol. 8, no. 6, pp. 63—77. DOI: 10.32362/2500-316X-2020-8-6-63-77 (in Russian).
  8. Volder J. E. The CORDIC Computing Technique, Proceedings of the Western Joint Computer Conference (WJCC), San Francisco, California, USA: National Joint Computer Committee (NJCC), 1959, pp. 257—261.
  9. Wu Y., Yu L., Zhuang W., Wang J. A Coverage-Driven Constraint Random-Based Functional Verification Method of Pipeline Unit, 2009 Eighth IEEE/ACIS International Conference on Computer and Information Science, Shanghai, China, 2009, pp. 1049—1054. DOI: 10.1109/ICIS.2009.34.
  10. Tukey J. W. The Future of Data Analysis, Princeton University and Bell Telephone Laboratories, 1961, 67 p.