DOI: 10.17587/prin.15.254-264
Concept of Processing and Interpretation of Spatiotemporal Vector Data
G. O. Orlov, Graduate Student, orlovgleb99@mail.ru, G. R. Vorobeva, Dr. Sci., Professor, gulnara.vorobeva@gmail.com, Ufa University of Science and Technology, Ufa, 450078, Russian Federation
Corresponding author: Gleb O. Orlov, Graduate Student, Ufa University of Science and Technology, Ufa, 450078, Russian Federation E-mail: orlovgleb99@mail.ru
Received on December 04, 2023
Accepted on March 19, 2024
The purpose of this work is to develop an approach to complex processing and interpretation of spatio-temporal vector data. In this regard, it is necessary to analyze existing methods for visualizing vector and tensor fields and organizing a database for their storage and develop a concept which contains the main advantages of these methods and allows one to interpret spatial data represented as a tensor. The developed concept proposes an approach to field visualization based on drawing superellipse glyphs at each point in space. Axes of glyphs correspond to the rank of the visualized tensor, and attribute values are expressed by varying the color gradient in its monochrome representation. The architecture of a web-based application, which implements the storage of spatial data in a hybrid DBMS, and interpretation of the necessary data upon request is also proposed. For the physical storage of tensor information, a hybrid relational-hierarchical model is proposed, in which the representation of direct spatial data and the corresponding metadata, including those characterizing the source of information, are separated. It is advisable to present the final result and intermediate data in GeoJSON format. This format is actually currently the standard for presenting geospatial data and is supported by almost all software platforms and libraries aimed at solving problems of this kind.
Keywords: tensor fields, visualization of tensors, glyphs, superellipses, heterogeneous data, tensor calculus
pp. 254–264
For citation:
Orlov G. O., Vorobeva G. R. Concept of Processing and Interpretation of Spatiotemporal Vector Data, Programmnaya Ingeneria, 2024, vol. 15, no. 5, pp. 254—264. DOI: 10.17587/prin.15.254-264. (in Russian).
References:
- Vorobev A. V., Vorobeva G. R. Web-based 2D/3D visualization of geomagnetic field parameters and its variations, Nauchnaya vizualizaciya, 2017, vol. 9, no. 2, pp. 94—101 (in Russian).
- Vorobev A. V., Vorobeva G. R., Yusupova N. I. Concept of a single space of geomagnetic data, Trudy SPIIRAN, 2019, vol. 18, no. 2, pp. 390—415. DOI: 10.15622/sp.18.2.390-415 (in Russian).
- Boyarchuk M. A., Zhurkin I. G., Nepoklonov V. B. Analysis of methods for visualizing geophysical fields in geographic information systems, Izvestiya vysshih uchebnyh zavedenij. Geodeziya i aerofotosemka, 2017, no. 1, pp. 108—113 (in Russian).
- Boyarchuk M. A., Zhurkin I. G., Uchaev D. V., Uchaev Dm. V. Two-dimensional visualization of three-dimensional geophysical fields in problems of geoinformation modeling, Izvestiya vysshih uchebnyh zavedenij. Geodeziya i aerofotosemka, 2019, vol. 63, no. 6, pp. 718—728. DOI: 10.30533/0536-101X-2019-63-6-000-000 (in Russian).
- Boyarchuk M. A., Zhurkin I. G., Nepoklonov V. B. Concept of a visualization method for Earth's gravity field on plain maps, Nauchnaya vizualizaciya, 2019, vol. 11, no. 1, pp. 70—79. DOI: 10.26583/sv.11.1.06 (in Russian).
- Boyarchuk M. A. Development and research of a method for displaying the vector gravitational field of the Earth for geoinformation analysis: dis.... cand. tech. Sciences: 25.00.35. Moscow, 2020, 128 p. (in Russian).
- Earth's Surface Magnetism, available at: https://earthob-servatory.nasa.gov/images/4505/earths-surface-magnetism (date of access 12.11.2023).
- Chongke Bi, Lu Yang, Yulin Duan, Yun Shi. A survey on visualization of tensor field, The Visualization Society of Japan, 2019, vol. 22, no. 1, pp. 1—20. DOI: 10.1007/s12650-019-00555-8.
- Schleich M., Shaikhha A., Suciu D. Optimizing Tensor Programs on Flexible Storage, Proceedings of the ACM on Management of Data, 2023, vol. 1, no. 1, article no 37, pp. 1—27. DOI: 10.1145/3588717.
- Fong S. P., Wong T. Y. Information Systems Reengineering, Integration and Normalization: Heterogeneous Database Connectivity, Cham, Switzerland, Springer Cham, 2021, 384 p.
- Meixia Feng. Geodata for everyone — model-driven development and an example of INSPIRE WFS service, Open Geo-spatial Data Software and Standards, 2016, vol. 1, no. 1, pp. 1—8. DOI: 10.1186/s40965-016-0007-y.
- Vorobev A. V., Vorobeva G. R. Geoinformation system for amplitude-frequency analysis of observation data of geomagnetic variations and space weather, Kompyuternaya optika, 2017, vol. 41, no 6, pp. 963—972. DOI: 10.18287/2412-6179-2017-41-6-963-972 (in Russian).
- Hierarchical data structures in relational databases, available at: https://www.rsdn.org/article/db/Hierarchy.xml (date of access 13.11.2023).
- Stojanovic A., Horvat M., Kovacevic Z. An overview of data integration principles for heterogeneous databases, MIPRO 2022 45th Jubilee International Convention on Information and Communication Technology, 2022, vol. 2, pp. 1264—1269. DOI: 10.23919/ MIPRO55190.2022.9803579.
- Vorobev, A. V., Soloviev A. А., Pilipenko V. A., Vorobeva G. R. Internet Application for Interactive Visualization of Geophysical and Space Data: Approach, Architecture, Technologies, Journal of the Earth and Space Physics, 2022, vol. 48, no. 4, pp. 151—160. DOI: 10.22059/jesphys.2023.350281.1007467.
- The GeoJSON Specification, available at: https://datatrack-er.ietf.org/doc/html/rfc7946 (date of access 25.11.2023).
- Huang Y., Wu L., Li D. Theoretical Research on Full Attitude Determination Using Geomagnetic Gradient Tensor, The Journal of Navigation, 2015, vol. 68, no. 5, pp. 951—961. DOI:10.1017/S0373463315000259.
- Olsen N., Kotsiaros S. The geomagnetic field gradient tensor, GEM — International Journal on Geomathematics, 2012, vol. 3, no. 2, pp. 297—314. DOI: 10.1007/s13137-012-0041-6.