DOI: 10.17587/prin.15.243-253
The Predicting the Significance of Patented Technologies based on Innovation Potential Metrics
D. M. Korobkin, Associate Professor, dkorobkin80@mail.ru, A. A. Rublev, Bachelor, aarvlg@mail.ru, S. А. Fomenkov, Professor, saf@vstu.ru, Volgograd State Technical University, Volgograd, 400005, Russian Federation
Corresponding author: Dmitriy M. Korobkin, Associate Professor, Volgograd State Technical University, Volgograd, 400005, Russian Federation E-mail: dkorobkin80@mail.ru
Received on August 02, 2023
Accepted on February 29, 2024
To ensure one of the key principles of the development of the state, namely, the achievement of technological sovereignty, it is necessary to build all spheres of life at a qualitatively new technological level, own their own innovative technologies. In modern sanctions realities, the development of enterprises in the Russian Federation cannot be carried out without coordination with partners from Russia, as well as from China, India and other friendly countries. The selection of potential partners can be carried out on the basis of the identified importance of their patented technological solutions. Further ranking of potential partners can be carried out on the basis of the identified importance of their patented technologies. At the same time, in this study it is proposed to use three criteria: the mass nature of the subject of the patented invention in the current period; the predicted mass nature of the subject (technology) in the future period; the popularity of the patent in the information field. The authors have developed a method for predicting the importance of patented technologies and its software implementation.
Keywords: patent, parsing, forecast, clustering, enterprise, information, data, Python
pp. 243–253
For citation:
Korobkin D. M., Rublev A. A., Fomenkov S. А. The Predicting the Significance of Patented Technologies based on Innovation Potential Metrics, Programmnaya Ingeneria, 2024, vol. 15, no. 5, pp. 243—253. DOI: 10.17587/prin.15.243-253. (in Russian).
References:
- Novikov V. V., Pozdeev A. V. Osnovy patentovedenija: ucheb-noe posobie, Volgograd, VolgGTU, 2018, 168 p. (in Russian).
- Rospatent v cifrah i faktah, available at: https://rospatent. gov.ru/content/uploadfiles/annual-report-2022-short-version.pdf (date of access 02.06.2023).
- Lepa T. P. Features of the development of relations between China and India with Russia in modern geopolitical realities, Baikal research journal, 2022, vol. 13, no. 4. DOI: 10.17150/2411-6262.2022.13(4).11 (in Russian).
- Korobkin D. M., Fomenkov S. A., Kolesnikov S. G., Bezruchenko A. Yu. Revealing the technological complementarity of enterprises based on the analysis of the patent array, Modelirovanie, optimizaciya i informacionnie tehnologii, 2022, vol. 10, no. 4 (39), pp. 19—20. DOI: 10.26102/2310-6018/2022.39.4.010 (in Russian).
- Kashevarova N. A., Andreeva A. A., Ponomareva E. I. Digital tools of patent research, Voprosi innovacionnoi ekonomiki, 2020, vol. 10, no. 2, pp. 1059—1074. DOI: 10.18334/vinec.10.2.100816 (in Russian).
- Korobkin D. M., Fomenkov S. A., Borodin N. Yu., Vereschak G. A. Automation of the search for technology partners for R&D, Prikaspiiskii jurnal: upravlenie i visokie tehnologii, 2022, no. 4 (60), pp. 59—67 (in Russian).
- Karnishev V. I., Avdzeiko V. I., Paskal E. S. Classification of technical directions of development based on the analysis of time series of US patents. Empirical approach, Vestnik Tomskogo gosudarstvennogo universiteta. Ekonomika, 2021, no. 53, pp. 251—278. DOI: 10.17223/19988648/53/18 (in Russian).
- Korobkin D. M., Fomenkov S. A., Zlobin A. R., Vereschak G. A. The Formation of Metrics of Innovative Potential and Prospects for the Task of Technological Forecasting, Informacionnie tehnologii, 2023, vol. 29, no. 4, pp. 215—223. DOI: 10.17587/ it.29.215-223 (in Russian).
- Nikolaev A. S. Patentnaya analitika: uchebnoe posobie, SaintPetersburg, Universitet ITMO, 2022, 98 p. (in Russian).
- ARIMA Model — Complete Guide to Time Series Forecasting in Python, available at: https://www.machinelearningplus.com/time-series/arima-model-time-series-forecasting-python/ (date of access 02.06.2023).
- Strategia (Strategy), available at: https://metanit.com/sharp/patterns/3.1.php (date of access 02.06.2023).
- Raspopa E. A., Ananchenko I. V. Review of modern tools for automating testing of web applications, Almanah nauchnih rabot molodih uchenih universiteta ITMO, 2017, vol. 3, pp. 158—160 (in Russian).
- Chertushkin D. A. SQL or NoSQL — types of databases, differences and applications, Nofainfo.ru, 2022, no. 132, pp. 14—15 (in Russian).
- Salnikova N. A., Titarenko T. S., Smolova E. A. Information retrieval models for patent examination, Integraciya mirovoi nauki i tehniki: novie koncepcii i paradigm, 2023, pp. 250—254 (in Russian).
- Krasnov F. V. Comparative analysis of the accuracy of methods for visualizing the structure of a collection of texts, Internation journal of open information technologies, 2021, vol. 9, no. 4, pp. 79—84.
- Kara-Murza S. G. Citation in science and approaches to assessing the scientific contribution, Nauka. Kultura. Obschestvo, 2021, vol. 27, no. 4, pp. 132—141. DOI: 10.19181/nko.2021.27.4.11 (in Russian).