DOI: 10.17587/prin.14.55-61
Increasing the Performance of Information Services in Systems Focused with Large, Rarely Modified Data
V. A. Vasenin, Professor, vasenin@msu.ru, A. A. Zenzinov, Junior Researcher, V. A. Roganov, Senior Researcher,
Lomonosov Moscow State University, Moscow, 119991, Russian Federation
Corresponding author: Vladimir A. Roganov, Senior Researcher, Lomonosov Moscow State University, Moscow, 119991, Russian Federation, E-mail: radug-a@ya.ru
Received on December 10, 2022
Accepted on December 21, 2022
The article presents the results of the study, development and preliminary testing of the advanced mechanism of computing memoization oriented to information systems that work with large volumes of rarely modified primary data. The productivity of the information services of such systems can be significantly increased using the provided mechanisms for accurate work cache memory, when the results of those and only those calculations that affect the changes made by primary data are disabled.
Keywords: high-performance services, functional programming, computing memoization, dependency tracking
pp. 55–61
For citation:
Vasenin V. A., Zenzinov A. A., Roganov V. A. Increasing the Performance of Information Services in Systems Focused with Large, Rarely Modified Data, Programmnaya Ingeneria, 2023, vol. 14, no. 2, pp. 55—61. DOI: 10.17587/prin.14.55-61 (in Russian).
References:
- Gupta P., Zeldovich N., Madden S. A Trigger-Based Middleware Cache for ORMs, Middleware 2011, Eds F. Kon, A. M. Kermarrec, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2011, vol. 7049, pp. 329—349. DOI: 10.1007/978-3-642-25821-3_17.
- Bornhovd C., Altinel M., Mohan C. et al. Adaptive Database Caching with DBCache, IEEE Data Eng. Bull., 2004, vol. 27, no. 2, pp. 11—18.
- Django CachaLot. Django ORM caching system, available at: https://django-cachalot.readthedocs.io/en/latest/index.html
- Django CacheOps caching system, available at: https://github.com/Suor/django-cacheops
- Roganov V. A. Memoization, Incremental and Predictive Computing in the Context of Improving the Performance of Information Systems Working with Big Data), Lomonosovskie chtenija. Nauchnaja konferencija. Sekcija mehaniki, 20—26 April 2021, Tezisy dokladov, Moscow, Izd-vo Moskovskogo universiteta, 2021, pp. 186—187 (in Russian).
- Intellektual’naja sistema tematicheskogo issledovanija nauchno-tehnicheskoj informacii (ISTINA) (Intellectual System of Thematic Investigation of Scientometrical Data) / Eds V. A. Sadovnichij, S. A. Afonin, A. V. Bahtin et al. Moscow, Izd-vo Moskovskogo universiteta, 2014, 262 p. (in Russian).
- Sadovnichij V. A., Vasenin V. A. Intellectual System of Thematic Investigation of Scientometrical Data: Background of Creation and Methodology of Development Programmnaya Ingeneria. Part 1, Programmnaya Ingeneria, 2018, vol. 9, no. 2, pp. 51—58. DOI: 10.17587/prin.9.51-58 (in Russian).
- Zenzinov A. A. Using the A-machine in the task of automating the data import and verification in a scientometric information system, Lomonosovskie chtenija. Nauchnaja konferencija. Sekcija mehaniki, 18—22 April 2022, Tezisy dokladov, Moscow, Izd-vo Moskovskogo universiteta, 2022, pp. 81—82 (in Russian).