Journal "Software Engineering"
a journal on theoretical and applied science and technology
ISSN 2220-3397

Issue N8 2023 year

DOI: 10.17587/prin.14.377-387
Synthesis of Modular Multipliers
P. N. Bibilo, bibilo@newman.bas-net.by The United Institute of Informatics Problems of the National Academy of Sciences of Belarus, Minsk, 220012, Belarus
Corresponding author: Bibilo Petr N., Head of Laboratory, The United Institute of Informatics Problems of the National Academy of Sciences of Belarus, Minsk, 220012, Belarus, E-mail: petr.olibib@yandex.ru; bibilo@newman.bas-net.by
Received on May 22, 2023
Accepted on June 08, 2023

The results of experiments on the circuit implementation of modular multipliers in the design library of ASIC (Application-Specific Integrated Circuits) and FPGA (Field-Programmable Gate Array) are presented. The initial descriptions of modular multiplier projects were given by systems of not fully defined (partial) Boolean functions and algorithmic VHDL descriptions. Logical optimization was carried out in the class of disjunctive normal forms (DNF) and representations of Boolean function systems by BDD (Binary Decision Diagrams). The synthesized circuits were evaluated by area and time delay. It is established that the use of partial Boolean function models and preliminary logi­cal BDD optimization allows one to improve the parameters of synthesized ASIC and FPGA blocks for small module values, however, the best solutions for large module values can be obtained using algorithmic VHDL descriptions of modular multipliers. In the synthesis of modular multiplier circuits as part of an FPGA and the use of ISE and Vivado design systems it is advisable to use synthesized VHDL operations (a*b) mod p.

Keywords: modular calculations, modular multiplier, integer division operation, system of Boolean functions, Disjunctive Normal Form, Binary Decision Diagram, Shannon expansion, digital logic synthesis, VHDL, ASIC, FPGA
pp. 377–387
For citation:
Bibilo P. N. Synthesis of Modular Multipliers, Programmnaya Ingeneria, 2023, vol. 14, no. 8, pp. 377—387. DOI: 10.17587/prin.14.377-387 (in Russian).
References:
    • Akushskij I.YA., Yudickij D. I. Machine arithmetic in residual classes, Moscow, Sovetskoe radio, 1968, 440 p. (in Russian).
    • Chervyakov N. I., Sakhnyuk P. A., Shaposhnikov A. V., Ryadnov S. A. Modular parallel computing structures of neuroprocessor systems, Moscow, Fizmatlit, 2003, 288 p. (in Russian).
    • Stempkovskiy A. L., Kornilov A. I., Semenov M. Yu. Features of the implementation of devices with digital signal processing in the integrated design using modular arithmetic, Informatsionnye tekhnologii, 2004, no. 2, pp. 2—9 (in Russian).
    • Chervyakov N. I., D'yachenko I. V. Principles of construction of modular adders and multipliers, Modulyarnaya arifmetika: matly mezhdunar. nauch. konf., available at: http://www.computer-museum.ru/histussr/sokconf0.htm (in Russian).
    • Amerbaev V. M., Solov'ev R. A., Tel'puhov D. V. Implementation of a library of modular arithmetic operations based on algorithms for minimizing logical functions, Izvestiya YuFu, Tekh-nicheskie nauki, 2013, no. 7, pp. 221—225 (in Russian).
    • Amerbaev V. M., Solov'ev R. A., Tel'puhov D. V., Shchelokov A. N. Investigation of the effectiveness of modular comput­ing structures in the design of hardware single-stroke multipliers, Izvestiya YuFu, Tekhnicheskie nauki, 2014, no. 7 (156), pp. 248—254 (in Russian).
    • Telpukhov D. V., Sovovyev R. A., Balaka E. S. et al. Design features of the RNS-based multipliers using advanced CAD, Problemy razrabotki perspektivnyh mikro- i nanoelektronnyh sistem (MES), 2016, no. 1, pp. 249—254.
    • Brayton K. R., Hachtel G. D., McMullen C., Sangiovanni-Vincentelli A. L. Logic Minimization Algorithm for VLSI Synthesis, Boston, Kluwer Academic Publishers, 1984, 193 p.
    • Toropov N. R. Minimization of systems of Boolean functions in the class DNF, Logicheskoe proektirovanie, Minsk, Institut tehnicheskoj kibernetiki Nacional'noj akademii nauk Belarusi, 1999, no. 4, рр. 4—19 (in Russian).
    • Bibilo P. N. Application of Binary Decision Diagrams in the Synthesis of Logic Circuits, Minsk, Belaruskaja navuka, 2014, 231 p. (in Russian).
    • Bibilo P. N. Integrated Circuit Design Systems Based on the VHDL Language. StateCAD, ModelSim, LeonardoSpectrum, Moscow, SOLON-Press Publ., 2005. 384 p. (in Russian).
    • Solovyov V. V. XILINX FPGA Architectures: FPGA and CPLD 7-Series. Moscow, Goryachaya liniya — Telekom, 2016. 392 р. (in Russian).
    • Tarasov I. E. XILINX FPGA. Hardware Description Languages VHDL and Verilog, CAD, Design Techniques, Moscow, Goryachaya liniya — Telekom, 2020, 538 р. (in Russian).
    • Bibilo P. N., Romanov V. I. The system of logical optimization of functional structural descriptions of digital circuits based on production-frame knowledge representation model, Problemy razrabotki perspektivnyh mikro- i nanoelektronnyh sistem, 2020, Sb. trudov / Eds akad. RAN A. L. Stempkovskiy. Moscow, IPPM RAN, 2020, no. 4, pp. 9—16. DOI: 10.31114/2078-7707-2020-4-9-16.
    • Bibilo P. N., Lankevich Yu. Yu. The Use of Zhegalkin Polynomials for Minimization of Multilevel Representations of Boolean Func­tions Based on Shannon Expansion, Programmnaya Ingeneria, 2017, vol. 8, no. 8, pp. 369—384. DOI: 10.17587/prin.8.369-384 (in Russian).
    • Bibilo P. N., Kirienko N. A. Estimating Energy Consumption in Logical CMOS Circuits Based on Their Switching Activity, Russian Microelectronics, 2012, vol. 41, no. 1, pp. 59—70. DOI: 10.1134/S1063739711060035.
    • Bibilo P. N., Romanov V. I. CAD integration for logic synthesis using global optimization, Software & Systems, 2019, vol. 32, no. 1, pp. 26—33. DOI:10.15827/0236-235X.125.026-033 (in Russian).
    • Salamat S., Shubhi S., Khaleghi B., Rosing T. Residue-Net: Multiplication-free Neural Network by In-situ No-loss Migration to Residue Number Systems. 26th Asia and South Pacific Design Automation Conference (ASP-DAC), 2021, pp. 222—228.
    • Samimi N., Kamal M., Afzali-Kusha A., Pedram M. Res-DNN: A residue number system-based DNN accelerator unit, IEEE Trans. Circuits Syst., 2020, vol. 67, no. 2, pp. 658—671. DOI: 10.1109/TCSI.2019.2951083.