DOI: 10.17587/prin.14.24-33
Analysis of Relationships in the Virtual Space of Social Networks
I. Y. Alakbarova, Ph.D, airada.09@gmail.com, Institute of Information Technologies, Azerbaijan National Academy of Sciences (ANAS), Baku, Az1141, Azerbaijan
Corresponding author: Irada Y. Alakbarova, Ph.D, Institute of Information Technologies, Azerbaijan National Academy of Sciences (ANAS), Baku, Az1141, Azerbaijan, E-mail: airada.09@gmail.com
Received on July 14, 2022
Accepted on October 19, 2022
The article is devoted to a brief review of approaches to the analysis of social relations in social networks using comments and credentials located in the profiles of social network users. The study is aimed at revealing the behavior of the user and understanding the nature of his relationship with others. The proposed architectural scheme of the system for the intellectual analysis of social relations will make it possible to better understand and identify social relations between users of social networks.
Keywords: social relations, social networks, social big data, data mining, architecture scheme, machine learning
pp. 24–33
For citation:
Alakbarova I. Y. Analysis of Relationships in the Virtual Space of Social Networks, Programmnaya Ingeneria, 2023, vol. 14, no. 1, pp. 24—33.
References:
- Luo Ch. Analyzing the impact of social networks and social behavior on electronic business during COVID-19 pandemic, Information Processing & Management, 2021, vol. 58, issue 5, 102667. DOI:10.1016/j.ipm.2021.102667
- United Nations: Humanitarian emergencies and conflict situations, , available at: https://www.ohchr.org/ru/topic/humanitarian-emergencies-and-conflict-situations
- Stress and health, available at: https://cheb-cgb.med.cap.ru/shkoli-zdorovjya/shkola-dlya-pacientov-arterialjnoj-gipertenziej/tematika-zanyatij/stress-i-zdorovje
- Department of Economic and Social Affairs, Report, available at: https://www.un.org/development/desa/family/wp-content/uploads/sites/23/2018/05/BACKGROUND-PAPER.SDGs1611.FINAL_.pdf
- Frazzona E. M., Hartmannb J., Makuschewitzb T., Scholz-Reiterc B. Towards Socio-CyberPhysical Systems in Production Networks, Proceedings of the Forty Sixth CIRP Conference on Manufacturing Systems, 2013, vol. 7. pp. 49–54. DOI: 10.1016/j.procir.2013.05.009.
- Coleman J. S. Social Capital in the Creation of Human Capital, American Journal of Sociology, 1988, vol. 94, pp.95–120. DOI:10.1086/228943.
- Wasserman S., Faust K. Social Network Analysis: Methods and Applications, Cambridge University Press, 1994, 825 p.
- Lennon R., Rentfro R.W., Curran J.M. Exploring relationships between demographic variables and social networking use, Management and Marketing Research, 2012, vol. 11, pp. 1–16, available at: https://aabri.com/manuscripts/121164.pdf
- Serrat O. Social Network Analysis, Knowledge Solutions, 2017, pp. 39–43, available at: https://link.springer.com/chapter/10.1007/978-981-10-0983-9_9
- Van der Vlist F. N.,, Helmond A., Burkhardt M., Seitz T. API Governance: The Case of Facebook’s Evolution, Social Media + Societ, 2022, April-June, pp.1–24. DOI: 10.1177/2056305122108622
- Massari L. Analysis of MySpace user profiles, Information Systems Frontiers, 2010, vol.12, no.4, pp. 361–367. DOI: 10.1007/s10796-009-9206-8.
- Alakparova I.Y. On some approaches to the analysis of the information impact of users in social networks, Information Society, 2012, no. 3, pp. 31–38 (in Russian).
- Schleicher D.J., Smith T.A., Casper W.J., Watt J.D., Greguras G.J. It’s all in the attitude: the role of job attitude strength in job attitude–outcome relationships, Applied Psychology, 2015, vol.100, no.4, pp.1259-1274. DOI: 10.1037/a0038664.
- Zhou L., Lu Y., Vitale C. J. et al. Representation of Information about Family Relatives as Structured Data in Electronic Health Records, Applied Clinical Informatics, 2014, vol. 5, no.2, pp. 349–367. DOI: 10.4338/ACI-2013-10-RA-0080.
- Batagelj V., Mrvar A. Analysis of Kinship Relations with Pajek, Social Science Computer Review, 2008, vol.26,no.2, pp. 224–246. DOI:10.1177/0894439307299587.
- Mertzios G.B., Unger W. The Friendship Problem on Graphs, Journal of Multiple-Valued Logic and Soft Computing, 2016, vol. 27, pp.275–285.
- Putnam R.D. Social Capital: Measurement and Consequences, Canadian Journal of Policy Research, 2001, vol. 2, no.1, pp. 41–51.
- Bourdieu P., Coleman J.S. Social theory for a changing society, Westview Press, 1991, 389 p.
- Oldenburg B., Duijn M.V., Veenstra R. Defending ones friends, not ones enemies: A social network analysis of childrens defending, friendship, and dislike relationships using XPNet, PLoS ONE, 2018, vol. 13, no. 5, pp.1–14. DOI: 10.1371/journal.pone.0194323.
- Vaquera E, Kao G. Do you like me as much as I like you? Friendship reciprocity and its effects on school outcomes among adolescents, Social Science Research, 2008, vol. 37, no. 1, pp. 55-72. DOI: 10.1016/j.ssresearch.2006.11.002.
- Tan W., Blake M.W., Saleh I., Dustdar S. Social-network-sourced big data analytics, IEEE Internet Computing, 2013, vol. 17, no. 5, pp. 62–69. 10.1109/MIC.2013.100.
- Li N., Huang Q., Ge X. et al. Collective Behavior Analysis and Graph Mining in Social Networks, Complexity, 2022, Special Issue, article ID 6692210. DOI: 10.1155/2021/6692210
- Perer A., Guy I., Uziel E., Ronen I., Jacovi M. Visual social network analytics for relationship discovery in the enterprise, Proceedings of the IEEE Conference on Visual Analytics Science and Technology, Providence, RI, USA, 23–28 October 2011, pp.71-79. DOI: 10.1109/VAST.2011.6102443.
- Bello-Orgaz G., Jung J.J., Camacho D. Social big data: Recent achievements and new challenges, Information Fusion, 2016, vol. 28, pp. 45–59. DOI: 10.1016/j.inffus.2015.08.005.
- Olshannikova E., Olsson T., Huhtamäki J., Kärkkäinen H. Conceptualizing Big Social Data, Journal of Big Data, 2017, vol. 4, no. 3, DOI: 10.1186/s40537-017-0063-x
- Hyvärinen A., Karhunen J., Oja E. Independent Component Analysis, JohnWiley&Son, 2001, 476 p.
- Zhang L., Cai Z., Lu J., Wang X. Mobility-Aware Routing in Delay Tolerant Networks, Personal and Ubiquitous Computing, 2015, vol.19, no.7, pp.1111–1123. DOI: 10.1016/j.inffus.2015.08.005.
- Mtibaa A., May M., Diot C., Ammar M. PeopleRank: Social Opportunistic Forwarding, Proceedings of the IEEE INFOCOM, 14–19 March, 2010, San Diego, CA, USA, 2010, pp.1–5. DOI:10.1109/INFCOM.2010.5462261.
- Akhtar M.M., Zamani A.S., El-Sayed A. Link Analysis using Data Mining System, Applied Research in Computer Science and Information Technology, 2012, vol. 1, no. 2, pp.38–49.
- Liu D.W., Zhang Z.L., Guo X.H. Web mining based on one-dimensional Kohonens algorithm: analysis of social media websites, Neural Computing & Applications, 2017, vol. 28, pp. S641–S645. DOI: 10.1007/s00521-016-2410-9.
- Getoor L. Link mining: A new data mining challenge, ACM SIGKDD Explorations Newsletter, 2003, vol. 5, issue 1, pp. 84–89. DOI: 10.1145/959242.959253
- Yang J., Xiu X., Sun L., Ying L., Muthu B. Social media data analytics for business decision making system to competitive analysis, Information Processing & Management, 2022, vol. 59, issue 1, 102751. DOI: 10.1016/j.ipm.2021.102751
- Lin Z., Zhang Y., Gong Q., Chen Y., Ding A.Y. Structural Hole Theory in Social Network Analysis: A Review, IEEE Transactions on Computational Social Systems, 2021, available at: http://homepage.tudelft.nl/8e79t/files/pre-print-tcss2021.pdf
- Mani Ch. How Is Big Data Analytics Using Machine Learning? available at: https://www.forbes.com/sites/forbestechcouncil/2020/10/20/how-is-big-data-analytics-using-machine-learning/?sh=5454cca571d2
- Alguliev R.M., Aliguliyev R.M., Alekperova I.Y. Cluster approach to the efficient use of multimedia resources in information warfare in Wikimedia, Automatic Control and Computer Sciences, 2014, vol. 48, no. 2, pp. 97–108. DOI: 10.3103/S0146411614020023.
- Xiang L. Application of an Improved TF-IDF Method in Literary Text Classification, Hindawi: Advances in Multimedia, 2022, vol. 2022, Article ID 9285324. DOI: 10.1155/2022/9285324