НАНО- И МИКРОСИСТЕМНАЯ ТЕХНИКА

- Нанотехнологии
- Зондовая микроскопия
- Микромашины и наносистемы
- Молекулярная электроника
- Биоактивные нанотехнологии
- Элементы датчиков и биочипы
- Микроэлектромеханические системы
- Микрооптоэлектромеханические системы
- Биомикроэлектромеханические системы

12 (173) 2014
Рисунки к статье В. Е. Туркова, С. А. Жуковой, Д. Д. Рискина, П. Г. Бабаевского, Г. М. Резинченко
«РЕАКТИВНЫЕ МИКРОДВИГАТЕЛИ, ИЗГОТОВЛЯЕМЫЕ ПО ТЕХНОЛОГИИ МСТ»

Рис. 1. Послойная 2D-топология системы РМДТГ (а) и схема расположения основных компонентов (блоков) индивидуального микродвигателя в слое (б) [7]

Рис. 4. Концепции «цифровых» микроспутников фирмы Aerospace Corporation (а) и НАСА с наборами основных (1) и вспомогательных (2, 3) РМД (б) [19, 20]
Рисунки к статье В. Е. Туркова, С. А. Жуковой, Д. Д. Рискина, П. Г. Бабаевского, Г. М. Резниченко
«РЕАКТИВНЫЕ МИКРОДВИГАТЕЛИ, ИЗГОТАВЛИВАЕМЫЕ ПО ТЕХНОЛОГИИ МСТ»

Рис. 7. Расположение набора РМДТГ на наноспутнике (а) и общий вид некоторых наноспутников, разработанных по программе Cubesats (б-д)
Рисунки к статье В. Е. Туркова, С. А. Жуковой, Д. Д. Рискина, П. Г. Бабаевского, Г. М. Резниченко
«РЕАКТИВНЫЕ МИКРОДВИГАТЕЛИ, ИЗГОТОВЛЯЕМЫЕ ПО ТЕХНОЛОГИИ МСТ»

Рис. 14. Общий вид снизу, сверху и в сборке общей системы зажигания массива микродвигателей (а), структурная схема и микрофотография индивидуального зажигателя (б)

Рис. 20. Общий вид комплекса РМДТТ и его вид в сборке для испытаний

Рис. 21. Распределение напряжений сопла двигателей при воспламенении одного (а) и четырех (б) РМДТТ