4-я Международная научно-техническая конференция
«Технологии микро- и наноэлектроники в микро- и наносистемной технике»

27–28 марта 2014 г. состоялась четвертая Международная научно-техническая конференция «Технологии микро- и наноэлектроники в микро- и наносистемной технике». В этот раз она проводилась в ИНМЭ РАН — прекращено осваиваемое новым научно-исследовательским институте РАН, направления деятельности которого в значительной мере совпадают с приведенной ниже тематикой конференции.

- Моделирование, проектирование и технологии производства микрозлектроники, наноэлементов и устройств: наноэлектроника, наноэлектромеханические системы, эмиссионные структуры, системы хранения и преобразования энергии, биохимические системы.
- Нанотрубки и пористые материалы: структура, физические и химические свойства, методы измерения и контроля структуры и их свойств.
- Интегральные и беспроводные микрозлектромеханические системы: микро- и наночувствительные элементы и преобразователи, аналоговые и цифровые микросистемы обработки сигналов в интегральных МЭМС, аналоговые и цифровые приемопередающие устройства беспроводных МЭМС, средства снижения и возобновления энергопотребления беспроводных МЭМС.
- 3D-структуры и системы для микро-, наноэлектроники и МНЭМС, гетерогенные системы, тонкие и гибкие полюсажки для них.
- Комплексные системы мониторинга на основе интегральных и беспроводных МЭМС для медицинских, технологических, инженерных и транспортных применений.
- Технологии и конструкции изделий интеллектуальной сильной электроники для применения в аппаратуру бытового и промышленного применения, на транспорте, в топливо-энергетическом комплексе и в специальных системах.
- Перспективные конструкции и технологические принципы формирования оптоэлектронных и квантовых структур и приборов нового поколения.

Эти проблемы были обсуждены на четырех заседаниях секций конференции в 78 докладах. Доклады были представлены на основе научно-исследовательских работ 29 предприятий, учреждений и организаций из 11 городов 3 стран. Особенно отметим широкое представительство ученых Беларуси. Доклады охватывали широкий круг проблем на разном уровне детализации, от таких общих вопросов, как «Кремний-углеродные технологии для ИС и МЭМС» (А. Н. Саюр, чл.-корр. РАН) и «Применение альтернативных форм углерода для повышения эффективности изделий микро- и наноэлектроники» (В. А. Лабунов, академик НАН Белоруссии), и обобщающих докладов, таких как «Успехи и перспективы развития кремниевых гетероструктурных микросхем» (В. П. Тимошенко, д.т.н.) и «Исследование и разработка инертных МЭМС (С. П. Тимошенко, д.т.н., проф.) до конкретных результатов исследований, как например, «Расчет узкополосного СВЧ МЭМС переключателя для частотного диапазона 10–12 ГГц» (Н. В. Щаврук) или «Разработка биосенсора с использованием фермента фосфорицистазы и наночувствительного полевого транзистора (ИС FET) (М. С. Сироткина, к.х.н.).

По решению оргкомитета конференции часть наиболее интересных и подготовленных к печати докладов представлена в данном номере журнала «Нано- и микросистемная техника».

Следует отметить ставшую уже традицией сочетание конференции с обучающими семинарами. В этот раз проводился практический семинар по маршруту проектирования полупроводниковых БИС на БМК с участием более 60 представителей более чем 10 организаций.

Информация о конференции на сайте http://www.tcen.ru
Рисунок к статье В. А. Галперина, Д. Г. Громова, Е. А. Лебедева, А. С. Шулильева, Д. И. Смирнова, Ю.И. Шиляевой

«Размерный эффект в многослойных тонкопленочных термитных материалах на основе композита алюминий–нитрид меди»

Рис. 4. Рентгеновские дифрактограммы образцов № 1 и № 4 (а) и № 2 и № 3 (б)

Рисунок к статье В. А. Ванькова, Н. С. Землянникова, В. С. Суханова

«Современные технологии и подходы создания миниатюрных приемопередающих модулей»

Рис. 1. Конструкция приемопередающего модуля
Рисунок к статье П. П. Мальцева, М. В. Майтама, А. Ю. Павлова, Н. В. Щаврука «Расчет и изготовление узкополосного СВЧ микрозелектромеханического переключателя для частотного диапазона 10–12 ГГц на подложках арсенида галлия»

Рис. 5. Измеренные характеристики изоляции и собственных потерь СВЧ МЭМС-переключателей

Рисунок к статье К. В. Платонова «Микросборки с встроенными пассивными компонентами на кремниевой подложке»

Рис. 1. Прогноз роста рынка встраиваемых пассивных компонентов, выполненный компанией Yole Development [3]

Рисунок к статье С. В. Беляева, П. А. Шаманаева, С. В. Щербакова «Программный модуль конфигурирования СнК»

Рис. 2. Топология СнК