12–16 марта 2012 года в г. Дрезден (Германия) с успехом прошла пятидневная международная конференция DATE 2012 (Design Automation and Test in Europe) — крупнейшая в Европе комплексная конференция и выставка, объединяющая академических исследователей, разработчиков микроэлектронных систем и устройств, продавцов, заказчиков и пользователей систем автоматизированного проектирования микроэлектронных схем.

Концепция организационного комитета DATE по выбору места проведения конференции среди современных растущих городов-кластеров Европы опять оказалась успешной. Число посетителей конференции составило более 1400. Число посетителей выставки — более 800.

На конференцию 2012 г. было приглашено 974 доклада, что свидетельствует о высочайшем уровне конференции в мире (рис. 1). Из приглашенных докладов было отобрано 279 лучших, которые были включены в программу конференции, состоящую из 72 секций, включая 20 специализированных.

Вместе с конференцией прошла выставка, на которой были представлены оборудование и программные продукты для разработки, проектирования и тестирования встраиваемых систем и систем на кристалле, заказных ИС, программируемых вентильных матриц и печатных плат. В этом году в выставке участвовали свыше 50 компаний. Наиболее посещаемыми оказались стенды компаний GLOBALFOUNDRIES (рис. 2) и кластера компаний Silicon Saxony. Компания GLOBALFOUNDRIES представила разработки, выполненные совместно со своими партнерами — ARM, Cadence, Mentor Graphics и Synopsys. Стенд Silicon Saxony представлял проекты приглашенных в проект 300 микроэлектронных компаний из Дрездена и Саксонии. В рамках выставки прошли презентации новых программных продуктов и системных решений ведущих мировых продавцов САПР.

Конференция открылась 12 марта. 11 учебно-практических курсов, проведенных в этот день, были посвящены применению результатов проектирования от нанометровых ИБ-блоков до сложнейших систем на кристалле в реальных индустриальных проектах, а также использованию наноматериалов в современной микроэлектронике.

Основная программа конференции началась 13 марта с презентаций открытия конференции Президентом Здравствительного комитета DATE 2012, г-ном Вольфгангом Розенштейном (Wolfgang Rosenstiel), профессором Мюнхенского университета г. Тюбинген и Председателем руководства ассоциации Educentrum, объединяющей ученых и инженеров микроэлектронной промышленности Германии. На первой сессии конференции были представлен обзорный доклад г-на Клауса Медера (Klaus Meder), Президента отделения автомобильной электроники компании Bosch, посвященный вопросам и трудностям, возникающим при увеличении числа функций мобильных устройств. Вторым докладом пленарной сессии был доклад г-на Мохи Чияна (Moity Chian), Старшего Вице-президента компании GLOBALFOUNDRIES, посвященный новым системам и технологиям кремниевых фабрик.

С 13 по 15 марта прошли основные секции конференции (рис. 3) по широкому кругу вопросов проектирования ИС: системной интеграции микроэлектронных схем, систем и устройств, разработки средств САПР, технических решений для нанометровых проектов, тестирования проектных решений и т.д.

В последний день конференции были проведены 9 семинаров, посвященных проблемам разработки архитектуры встраиваемых схем, проектированию схем на системном уровне, разработке нанометровых схем и систем и т.д.

Большое внимание докладам, принятых в программу конференции, было уделяно участникам из стран Западной Европы (52%). Число приглашенных докладов из стран Северной Америки и стран Азии составило 36 и 17 % соответственно. Из стран Латинской Америки, Африки и Австралии было принято менее 1% докладов.

Растущее число участников конференции и выставки подтверждает тот факт, что DATE является не просто обычной европейской конференцией по проблемам САПР и проектирования ИС, а действительно, глобальным научным событием мирового масштаба.

Приглашение ученых и разработчиков микроэлектронной аппаратуры России к участию в следующей конференции и выставке, которая должна состояться 18–22 марта 2013 г. в г. Берлине (Германия) Информация о ней содержится на сайте www.date-conference.com

По всем вопросам обращайтесь по адресу: ИППМ РАН, 124365, г. Москва, ул. Советская, д. 3; тел./факс. (499) 729-9208

А. Л. Степановский, член комитета спонсоров DATE, директор ИППМ РАН, академик РАН
Рисунки к статье И.А. Аверина, И.А. Губича, Р.М. Печерской
«ФОРМИРОВАНИЕ И ИССЛЕДОВАНИЕ ПОРИСТЫХ ОКСИДНЫХ ПЛЕНОК НА АЛЮМИНИИ»

Рис. 1. Сканы поверхности образцов пористого оксида алюминия, сформированного на алюминиевой фольге:
а, б, в - ПОА, сформированный при постоянной плотности тока 50 мА/см² и напряжениях 60, 80, 100 В соответственно;
г, д, е - ПОА, сформированный при постоянном напряжении 100 В и плотностях тока 30, 90 и 180 мА/см² соответственно.

Рис. 2. Сканы поверхности образцов пористого оксида алюминия, сформированного на пленке алюминия, нанесенной на ситалловую подложку:
а, б, в - ПОА, сформированный при постоянной плотности тока 50 мА/см² и напряжениях 36, 40, 48 В соответственно;
г, д, е - ПОА, сформированный при постоянном напряжении 40 В и плотностях тока 90, 180 и 290 мА/см² соответственно.
Рисунки к статье И. Д. Бурлакова, А. В. Войцеховского, С. Н. Несмелоевой, Л. Я. Гринченко «Детекторы ультрафиолетового диапазона на основе p-i-n структур из соединения AlGaN»

Рис. 1. Гибридное УФ матричное фотоприемное устройство, состоящее из обратно-освещенной AlGaN матрицы фотодиодов на прозрачной для УФ излучения подложке, гибридно соединенной с помощью индиевых столбцов с кремниевым кристаллом считающей интегральной схемы, выполненной по КМОП-технологии [10].

Рис. 5. Изображение в отраженных УФ лучах долара США, полученное с помощью "солнечно-слепого" МФПУ [12].

Рис. 6. УФ изображение портрета на полированной алюминиевой пластине, полученное с помощью "солнечно-слепого" матричного фотоприемного устройства формата 320х256 [14].