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МОДЕЛИРОВАНИЕ И ОПТИМИЗАЦИЯМОДЕЛИРОВАНИЕ И ОПТИМИЗАЦИЯ
MODELING AND OPTIMIZATIONMODELING AND OPTIMIZATION

Разработан метод автоматического нахождения программы (на языке ФОРТ), реализующей данный алго-
ритм. Алгоритм задается в виде набора тестов (входные данные) → (выходные данные). И входные, и выходные 
данные представлены в виде наборов целых 4-байтовых чисел.

Генетический подход позволяет строить программу из отдельных блоков, "генов", которые оказались под-
ходящими хотя бы для некоторой части тестовых элементов. Генетические методы позволили найти реали-
зацию даже сравнительно сложных алгоритмов: десятичные и двоичные цифры числа, НОД, НОК, факториал, 
простые делители, биномиальные коэффициенты, сортировка коротких последовательностей, максимумы, 
минимумы, вычисление значений полиномов и другие.

Наш метод начинает работу со случайного перебора коротких программ, выделяет из них блоки ("гены") 
хоть немного подходящие для решаемой задачи. А затем строит программу с использованием найденных "генов".

A method for automatic finding of a program (in the FORT language) that realizes the given algorithm is developed. The 
algorithm is specified by a set of tests of the form (input_data) → (output_data). Both input and output data are represented as a sets 
of 4-byte integers. Genetic methods have made it possible to find the implementation of even relatively complex algorithms: decimal 
and binary digits of numbers, GCD, LCL, factorial, simple divisors, binomial coef ficients, sorting of short sequences, highs, lows, 
calculation of polynomial values and others. The genetic approach allows you to build a program from separate blocks, "genes", 
which turned out to be suitable for at least some part of the test elements. Genetic methods made it possible to find the implementation 
of even relatively complex algorithms: decimal and binary digits of a number,, NOC, factorial, simple divisors, binomial coefficients, 
sorting of short sequences, maxima, minima, calculation of polynomial values and others. Our method starts by randomly sorting 
through short programs, extracting blocks ("genes") from them at least slightly suitable for the problem being solved. And then he 
builds a program using the found "genes". The set of used "genes" in the process of the algorithm is constantly being adjusted, 
improved. The complexity of direct enumeration grows exponentially with increasing program length. The genetic method we propose 
allows us in many cases to drastically reduce the volume of search. The FORT language is chosen because of its compactness: all 
listed algorithms are placed in no more than 10—15 commands. Although, if we take into account the genes found, the total length 
of the program will be significantly longer. In addition, the mechanism of embedding "genes" already, in fact, is in the language. Our 
method is configured to work with integers, but it can be applied to data containing real numbers, strings, etc. In the case of working 
with real numbers, the method can be considered as an alternative to the methods used in neural networks.
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Inroduction

Our goal is to automatically obtain a program 
in some programming language that implements an 
algorithm, defined by a set of test’s elements. To 
create such a program, we will use methods that 
in some sense have analogies in biology, in genet-
ics. This approach is called "Genetic programming" 
(GP) [2, 6]. In all known applications, the desired 
algorithm is defined by a set of tests, for example, 
for the sum of two squares we would have:

1, 1 → 2
2, –1 → 5
0, 4 → 16

...

In the early days of GP, the goal of GP was exact-
ly the construction of a program that implements a 
given algorithm in the selected programming lan-
guage. In this paper we return to this original goal 
and show that it can work effectively. Moreover, in 
the classical textbooks [7, 8], it was emphasized that 
the particular choice of a programming language is 
not of importance, as all languages are equivalent 
in power to the Turing machine.

In practice, this was not entirely true. The num-
ber of possible programs turned out to be too large 
and was highly dependant on the choice of the pro-
gramming language. So generally speaking, the ap-
plication of GP for searching programs did not give 
the results that they had hoped for at the beginning.

Significant achievements were obtained in the 
case of tree-based genetic programming, that is, 
when the program is presented in the form of a 
tree of calculations. However, in this case the ob-
tained algorithms are much more complicated than 
we wish them to be. The classical example which is 
frequently used in textbooks and articles considers 
a program that implements computation x → x2 +
+ x + 1 or even x → x6 + x5 + x4 + x3 + x2 + x + 1 
[9, 17, 20, 25]. These GP obtained programs have 

no cycles. In this direction, there is an interesting 
work [18]. Authors managed to find programs that 
implement the following functions:
 � nguen1: x → x3 + x2 + x + 1,
 � nguen2: x → x4 + x3 + x2 + x + 1,
 � nguen3: x → x5 + x4 + x3 + x2 + x + 1,
 � nguen4: x → x6 + x5 + x4 + x3 + x2 + x + 1,
 � keijzer4: x → x3e–xcos(x)(sin2(x)cos(x) – 1),

and several other functions of this kind.
Genetic methods yielded great results in ap-

proximating real-valued functions. Here GP me-
thods can compete with neural networks and even 
interlock with them. For example, in [26] typical
10 regression problems for neural networks are 
solved using GP methods.

In [12, 15], the concept of Recurrent Carte-
sian Genetic Programming (RCGP) is introduced, 
in which the calculation graph can contain cycles. 
As a result, the authors managed to implement the 
functions n → n(2n – 1), n → 1 + n(n + 1)/2,
n → n(n2 + 1)/2, and finally, even the Fibonacci 
numbers. However, this is not a real replacement for 
full-cycle operators.

In [13], 29 tasks were proposed for testing ge-
netic programming research. Most of them require 
wor king with real numbers, strings, arrays, with 
displaying information on the screen. Some of these 
tasks can be also handled by our approach if we 
leave the result in the stack instead of its output 
onto the screen.

The approach closest to ours is Linear Genetic 
Programming (LGP) method [6, 11, 17, 20, 23, 24]. 
In this method, the program is represented as a 
sequence of instructions from imperative program-
ming language. Their typical set consists of 4 arith-
metic operations (two arguments) and a number of 
mathematical functions, for example exp, sin, sqrt, 
etc. Practically all considered systems receive algo-
rithms without cycles.

In [14] C++ is used. However, here the primary 
goal is the (minor) correction of already created (by 
students) programs.

Комплект используемых "генов" в процессе работы алгоритма постоянно корректируется, улучшается.
Сложность прямого перебора растет экспоненциально с ростом длины программы. Предлагаемый нами ге-

нетический метод позволяет во многих случаях радикально сократить объем перебора.
Язык ФОРТ выбран ввиду его компактности: все перечисленные алгоритмы помещаются в не более, чем 

10—15 команд. Хотя, если учитывать найденные гены, общая длина программы будет существенно больше. 
Кроме того, механизм встраивания "генов" уже фактически есть в языке.

Наш метод настроен на работу с целыми числами, однако его можно применить и к данным, содержащим 
действительные числа, строки и т. д. В случае работы с действительными числами метод можно рассматри-
вать как альтернативу методам, применяемым в нейронных сетях.

Ключевые слова: генетический алгоритм, линейное генетическое программирование, эволюционное про-
граммирование, машинное обучение, Forth
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In [10] describes automatic creation of the sim-
plest program in the language Haskell. Again there 
are no cycles in the examples, even though there are 
calls to functions that work with arrays as a whole.

In [21] several GP methods are benchmarked on 
the 29 tasks from [13].

In the book [16] methods of GP in Python are 
considered. Here, more than a dozen different prob-
lems are solved by GP methods. The main difficulty 
in them is not the genetic algorithms themselves, 
but the suitable reformulation of the problem. Af-
ter that, the problem can be solved by the genetic 
method, or directly.

The widely distributed machine learning package 
"TensorFlow" [3] also contains some tools for genetic 
programming. See more on this in, e.g., [19].

In fact, in almost all cases, the considered ge-
netic methods are reduced to finding the minimum 
of certain loss function from some, possibly, quite a 
considerable number of parameters.

All these approaches takes us far away from the 
original idea of GP. In the this paper we instead 
stay within the framework of the originally for-
mulated task. Algorithms are assumed to be quite 
complex, including conditional operators and cy-
cles. Obviously, for a linear representation of the 
program one needs some version of the bytecode. 
Another problem is the method of accessing vari-
ables. In our opinion, one of the most compact way 
is the data stack. Programming language Forth lan-
guage satisfies these conditions. Functions in Forth 
take all the arguments from the data stack and also 
leave the results of calculations there. In this paper, 
we restrict ourselves to the minimum possible set 
of tools: we don’t use real numbers, strings, only 
4-byte integers, we do not use variables, arrays, 
only data in the stack. Thus, we reduce Forth to
a minimal subset of tools (only 32-bit integers, only 
stack, no registers, no variables), which allow us 
to solve quite complicated tasks, like GCD, bino-
mial coefficient, primality testing, and so on. In 
the future, we would like to introduce other data 
types: real numbers, strings, etc. In addition, from 
the rather exotic language Forth, we would like to 
switch to some more common language (C, Java, 
etc.) or to an assembly language.

The key idea is to use partial programs, that is, 
programs that do not pass all tests, but only a part 
of them. We assume that fragments of such pro-
grams will be contained in the general program. We 
will use these fragments as "genes".

Overfitting. When training neural networks, the 
problem of overfitting often arises. In our case, this 
means that the program will work correctly only on 
the input data that are available in the test. This 

means that the program implements a tabular algo-
rithm. This problem is completely eliminated in the 
present work as we introduce a limit on the length 
of the program. It is sufficient to require that the 
length of the program does not exceed the number 
of test elements.

Structure of the work. In section 1, we define 
the concept of a test and a test element. Section 2 
contains a brief description of the version of Forth 
that we use. In section 3 we describe the methods 
that are used to find the Forth-realization, section 4
describes our results.

1. Problem definition

We want to find a program in some program-
ming language implementing given algorithm. The 
algorithm will be defined as a set of tests:

 (input_data) → (output_data).

The unit of the test is the pair t = (x, y), where
(x ∈ X, y ∈ Y ), and X, Y are the corresponding sets 
of input and output objects. In this paper we con-
sider as input and output objects as a sequences of 
32-bit integers of fixes length.

Test files. A "test" is an arbitrary finite set of test 
items. Sometimes, when there are no confusion, we 
call a single test element a test. In practice, the test 
is represented by a text file of the form:

#T SHIFTR _ 0 x,y -> x*2^y comment
<in> 9 3 </in><out> 1536 </out>
<in> 4 3 </in><out> 48 </out>
<in> 2 7 </in><out> 28 </out>
...

Definition 1. Pair (m, n), where m is a number of 
input integers and n is a number of output integers 
is called the signature of the test element.

Remark 1. In general, it is allowed to have test 
elements with different signatures in one test. But 
this possibility is not used in the present work.

The number of test items in each test varies from 
a several to hundreds.

A large set of test files is freely available on our 
website [1]. Not for all of them our GP method was 
able to find implementing programs. The tests on 
the website are grouped by sections: polynomials, 
max/min, sorting, GCD, LCM, factorials, number 
theory, decimal and binary digits and so on.

2. Programming language

From our point of view all programs are divided 
into two types: linear (with goto) and structural. 
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The advantages and disadvantages of each type are 
quite obvious and there is no fundamental differ-
ence between them from our point of view. We have 
chosen a linear approach in our work (at least for 
this initial stage). Usually, this is done by selecting 
an assembly-type instruction set (registers). In the 
present work the stack approach (already imple-
mented in the language of Forth [4, 5]) is deemed 
to be more effective. To find the program with the 
genetic method, the most stripped-down version of 
the Forth was chosen. Only those instructions are 
left, which are impossible to do without. There is 
no interaction with the user, such as output to the 
screen, and even variables are missing. The control 
structures are represented only by unconditional 
and conditional jump-instruction. Forth is very 
compact, new words (functions) are introduced very 
easily. The newly defined functions have exactly the 
same syntax as the built-in language elements. This 
is convenient for a genetic approach. Thanks to this, 
one does not need to go through programs with 
complex structure in the form of a tree, only the 
simplest ones.

An example of a program that calculates the sum 
of the squares of two numbers and the factorial:

: SUMSQ2 DUP * SWAP DUP * +;
: FACTORIAL CONST 1 OVER -- -ROT * 

OVER IF -6 SWAP DROP;

All programs and functions in Forth work with 
the data stack. Only 4-byte integers are stored on 
the stack. The functions have no explicit arguments. 
The input data that they take is from the stack and 
they leave the results of their work in the same place.

The number of such implicit arguments can vary, 
depending on the state of the stack. Such a signa-
ture will be called "floating". For now, we will only 
consider functions with a fixed, static signature. 
At each point of such a program, the current stack 
depth is statically determined.

Everywhere below, functions will be called 
"words", or "genes". At each moment, the system 
has a certain set of built-in words (functions) and 
the current set of new genes, that is, new words 
built in the learning process ("evolution"). One step 
of evolution is the construction of one or more new 
words (functions) that solve one problem (test) in 
whole or in part.

Bytecode. The program in Forth is a byte se-
quence, each byte is a separate command. There are 
two types of commands: built-in and implemented 
on Forth itself. Thus, the total number of com-
mands cannot be more than 255.

In our version of Forth there are 33 built-in 
commands: unconditional (GOTO) and conditional 

(IF) jump, numeric literal (CONST), stack manipula-
tion commands (DUP DROP SWAP OVER ROT — 
ROT 2PICK 3PICK 4PICK 3ROLL 4ROLL), arith-
metic (NEGATE +– * / % /% ++ – –), bit com-
mands (AND OR XOR NOT), logical (comparison)
(> < = 0 = 0> 0>).

In addition to the built-in commands, the system 
may contain commands implemented on Forth it-
self, for example, finding the sum of squares of two 
elements at the stack:

: SUMSQ2  DUP * SWAP DUP * +;

The colon at the beginning of the command is 
a sign of the beginning of a new word. The name 
of the function follows. The semicolon at the end is 
a sign of the end of the word (function, program). 
The name of a function can be an arbitrary string of 
characters that does not contain spaces, tabs to the 
end of the line. Individual words are separated by 
spaces or tabs or line ends. An important advantage 
of Forth is that it is not required to develop a mech-
anism for "embedding genes", as it is already exist 
in the language. New words (procedures, functions, 
"genes") are used in exactly the same way as built-
in ones. The current list of words (the dictionary) 
under biological interpretation will be considered as 
a "genome".

3. General algorithm

At first, let’s just try to iterate through all the 
programs to a given length.

Working time. Having 33 basic words, we get 
≈109 programs of length 6.

If we check about 10 million programs per se-
cond (one core, frequency ≈3 GHz), then a full 
search will take about a minute. In an hour, you 
can go through all the programs of length 7. The 
search of all programs of length 8 requires more 
than a day. For an 8-core processor, it is realistic 
to check programs of length 9. Finding longer pro-
grams requires more complex methods.

A base step with parameters (L0, L1, T) in a 
fixed dictionary is the following algorithm.

1. A full search of programs up to length mL0. 
Then build a list of partial programs (that is, pro-
grams that do not perform all tests, but only some 
of them).

2. Using the partial programs, build a list of word 
frequencies and a list of frequencies of word pairs.

3. Check random programs of length L0 + 1...L1 
within a specified interval of time T seconds.

4. Correct the frequency tables and repeat step 3, 
this cycle is performed K (usually 8) times.
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The typical values of the parameters for working 
on one processor core is (7, 14, 400), that is, first 
perform a full search of programs of length m7, 
then 8 times for 50 seconds is performed alternately 
probabilistic/Markov search of programs of length 
from 8 to 14 with correction of the frequency table 
after each cycle.

Genes. As already mentioned, the list of words in 
the dictionary plays the role of "genome". Each gene 
added can be either "good", "useful", or "unsuccess-
ful", "useless". The quality of the function-gene itself 
cannot be determined, only as part of the genome, 
aimed at solving a specific problem. Therefore, we 
introduce a definition of genome (dictionary) qua-
lity in relation to this set of tests. If the new gene 
improves the quality, we will consider it a good one. 
As the "candidates for genes" we will take the most 
frequent chains of bytes of length 2 or 3 among par-
tial programs. During the process we will have two 
lists of programs (genes): "candidates for genes", and 
"unsuccessful genes". There should be no duplicate 
elements in them.

1. Find a list of valid words. Upon completion 
of the search, we get, besides this list, also a list of 
partial programs.

2. Clear the list "candidates for the genes" and 
"bad genes".

3. In the lists of "candidates for genes" add the 
most frequent chains of length 2, 3, and only those 
that are not in the list of "unsuccessful genes".

4. If there are no candidates for genes, we finish 
the job.

5. Add one of the candidates to the dictionary.
6. Perform a basic step with this genome, find 

its quality.
7. If the gene was unsuccessful, remove it from the 

dictionary and add it to the list of "unsuccessful genes".
8. Goto step 3.

4. Results

Here is a list of algorithms that have been imple-
mented.

By brute force and probabilistic method. Squar-
ing, odd, even, abs, sign, sum of two squares, max/
min of two or three numbers, sorting of two num-
bers, GCD in special case (x,yl1), factorial (xl1), 
left/right shift in k>0 bits, minimal natural divider 
in special case (x>1). Decimal/hex/binary digits: 
lower, high.

Squaring::  SQUARE DUP *;
Multiply by 2:  MUL2 DUP +;
Test odd: ODD CONST 1 AND;

Signum: SIGN DUP 0 = IF 6 0> DUP IF 2 --;
Sum of suares: SUMSQ2 DUP * SWAP DUP * +;
Absolute value: ABS DUP 0> IF 2 NEG;
Descending sort of 2 numbers:
  SORT2R OVER OVER > IF 2 SWAP;
Ascending sort of 2 numbers:
  SORT2 DUP 2PICK > IF 2 SWAP;
Maximum of 2 numbers:
  MAX2 OVER OVER > IF 2 SWAP DROP;
Minimum of 2 numbers: 
  MIN2 DUP 0> IF 2 SWAP IF 2 ROT;
Maximum of 3 numbers: 
  MAX3 OVER 3ROLL > IF 2 SWAP DROP;
Minimum of 3 numbers:
  MIN3 ROT 2PICK 0> IF -4 DROP DROP;
Polynomials:
(a,b,x) → bx + a: poly1 * +;
(a,b,c,x) → cx2 + bx + a:
  poly2 -ROT 2PICK * + * +;
x → 2x-3: pol1 _ 1 -- DUP + --;
x → -3x + 4: pol1 _ 2 -- CONST -3 * + +;
x → x-1: pol1 _ 3 --;
x → 2x-1: pol1 _ 4 DUP + --;
x→ 10x-3: pol1 _ 5 CONST 10 * -- -- --;
x -> 11x + 7: pol1 _ 6 CONST 11 * CONST 7 +;
x → 2x2: pol2 _ 1 DUP OVER + *;
x → -3x2 + x: pol2 _ 2 DUP CONST -3 * + + *;
x -> x2 -2x + 1: pol2 _ 3 -- DUP *;
(a,b,c) → b2-4ac: discr OVER ROT *
  -ROT * CONST 4 * -;
Digits:
Lower digit: digit0 CONST 10 %;
Next digit: digit1 CONST 10 / CONST 10 %;
Hundreds: digit2 CONST 10 DUP * / CONST 10 %;
The highest digit:digitH DUP C10 / DUP -ROT
  IF -5 SWAP DROP;

Using genes. Using the constructed algorithms as 
"genes", we managed to find the following algorithms.

Sum of three squares, sorting/mid of three num-
bers, GCD in general case (arbitrary x,y), factorial 
(arbitrary x), left/right shift, minimal natural divider 
in general case (arbitrary x). Arbitrary decimal/hex/
binary digits. The average of the three numbers. Bi-
nomial coefficients.

Here are, for example, some of these programs.

Right shift: (n,x) → 2n x (only for n>0)
: DUP + SWAP -- DUP -ROT IF -7 +;
Digit K: (K, x) → (x/10K) % 10
: digitK DUP IF 4 SWAP C10 / OVER --
 ROT IF -7 DROP C10 %;
GCD(x,y):
: GCD _ 0 DUP -ROT % DUP IF -5 -;
: GCD _ 1 OVER ROT IF 3 GOTO -5 GCD _ 0;
: GCD ABS SWAP ABS GCD _ 1;
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or, without genes:
: GCD ABS SWAP ABS OVER ROT
 IF 3 GOTO -5 DUP -ROT % DUP
 IF -5 -;
: FACTORIAL CONST 1 OVER -- -ROT *
 OVER IF -6 SWAP DROP;
: BINOM DUP 2PICK — SWAP FACTORIAL
 SWAP FACTORIAL / SWAP FACTORIAL /;

Programs are given in full, with already built-in 
genes.

An exe-file that implements the algorithms 
described in the work can be obtained on our 
website [1]. A detailed description of the program 
is available in our text in arxiv.org [26] (this text 
contains a very detailed description of our programs 
which we removed from the present paper for the 
purpose of conciseness).

Conclusion

The proposed GP method allows to obtain pro-
grams that implement quite complex algorithms: 
factorial, binomial coefficients, search for a prime 
divider, etc. The achieved level of program com-
plexity significantly exceeds that obtained by other 
methods. However, there are still many algorithms 
that cannot be implemented. For example, the fin-
ding of Fibonacci numbers is not yet obtained with-
out "prompts", that is, without additional genes.

Based on the analysis of the obtained results, it 
is possible to build more advanced methods that can 
enable the implementation of even more complex 
algorithms.
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