MOAEINMUPOBAHUE U ONTUMUIALLUA
MODELING AND OPTIMIZATION

DOI: 10.17587/it.26.3-8

S. Khashin, PhD, Professor, e-mail: khash2@gmail.com,
S. Vaganov, PhD Student, e-mail: prol00-pioner@mail.ru,
Ivanovo State University, Ivanovo, 153025, Russian Federation,

Corresponding author: Khashin Sergei, Ivanovo State University,
Ivanovo, 153035, Russian Federation, e-mail: khash2@gmail.com

Genetic Algorithms Using Forth

A method for automatic finding of a program (in the FORT language) that realizes the given algorithm is developed. The
algorithm is specified by a set of tests of the form (input_data) — (output_data). Both input and output data are represented as a sets
of 4-byte integers. Genetic methods have made it possible to find the implementation of even relatively complex algorithms: decimal
and binary digits of numbers, GCD, LCL, factorial, simple divisors, binomial coefficients, sorting of short sequences, highs, lows,
calculation of polynomial values and others. The genetic approach allows you to build a program from separate blocks, "genes”,
which turned out to be suitable for at least some part of the test elements. Genetic methods made it possible to find the implementation
of even relatively complex algorithms: decimal and binary digits of a number,, NOC, factorial, simple divisors, binomial coefficients,
sorting of short sequences, maxima, minima, calculation of polynomial values and others. Our method starts by randomly sorting
through short programs, extracting blocks ("genes”) from them at least slightly suitable for the problem being solved. And then he
builds a program using the found "genes". The set of used "genes" in the process of the algorithm is constantly being adjusted,
improved. The complexity of direct enumeration grows exponentially with increasing program length. The genetic method we propose
allows us in many cases to drastically reduce the volume of search. The FORT language is chosen because of its compactness: all
listed algorithms are placed in no more than 10—15 commands. Although, if we take into account the genes found, the total length
of the program will be significantly longer. In addition, the mechanism of embedding "genes" already, in fact, is in the language. Our
method is configured to work with integers, but it can be applied to data containing real numbers, strings, etc. In the case of working
with real numbers, the method can be considered as an alternative to the methods used in neural networks.

Keywords: Genetic algorithm, Linear genetic programming, Evolutionary programming, Machine learning, Forth

YK 004.023 DOI: 10.17587/it.26.3-8

C. . Xamun, PhD, xana. ¢dus.-Mmat. Hayk, jgoil., e-mail: khash2@gmail.com,
C. E. Baranos, acriupaHT, e-mail: prol00-pioner@mail.ru,
MBaHOBCKMI TocynapCTBEHHbIW YHUBEPCUTET, I. U BaHOBO

Genetic Algorithms Using Forth

Paszpaboman memod aemomamuueckoeo Haxodxcoenus npoepammul (Ha azvike DOPT), peasusyroueii 0anHbli aneo-
pumm. Areopumm 3adaemcs 6 eude Habopa mecmoe (6xo0Hbvle daHHble) — (6bIX0O0HbIe daHHble). U 6X00Hble, U 6bIX00HbIE
daHHble npedcmasneHbl 6 gude HAOOPO8 yeavlx 4-0alimosslx uces.

Tenemuueckuii n00x00 nO36045em CMPOUMb NPO2PAMMY U3 OMOCAbHbIX O10K08, "2eH08", Komopble 0KA3aAUCh NOO0-
xX00AauumMU Xxoms 6bl 0451 HeKOMOPOU Yacmu mecmoswvlx snemenmos. lenemuyeckue memoodsl RO380AUAU HAUMU peanu-
3ayur 0asxce CPAGHUMENbHO CAONCHBIX AN20pUMMO8: decamuuHble u deouyrnsie yugpot yucara, HOJMN, HOK, pakmopuan,
npocmole deaumenu, OUHOMUAAbHbIE KOIDOUUUEHMbL, COPMUPOBKA KOPOMKUX nocaedogamenvHocmell, MAKCUMYMbL,
MUHUMYMDbL, 8bIMUCACHUE 3HAYEHUTI NOAUHOMOG U dpyeue.

Haw memod nauunaem pabomy co cay4aiiHoeo nepebopa KOpomKux npoepamm, evideasiem u3 Hux 6aoxu ("eeHwvt")
XOMb HeMH020 N00X00Auue 045 peuraemoli 3adauu. A 3amem cmpoum npo2pammy ¢ UCHOAb308AHUEM HAUIOeHHbIX "2eH08".

MHPOPMALIMOHHbIE TEXHONOTI U, Tom 26, Ne 1, 2020 3



epammuposanue, mauwunnoe odyuernue, Forth

Komnaexm ucnoavszyemuix "eenos” ¢ npoyecce pabomeol aneopumma nOCMOSAHHO KOPPEKMUPYEMCsl, YAYHUaemcs.

CaosicHocms npamoeo nepebopa pacmem dKCNOHEHUYUAALHO C POCMOM OAUHbL npoepammsl. [Ipedaaeaemuili namu ee-
HemuyvecKuil Memod no36045em 0 MHOUX CAYHAAX PAOUKAABHO COKpaAmMums 00sem nepebopa.

S3vic DOPT evibpan 66udy e2o0 KOMRAKMHOCMU: 6Ce NepevucieHHble aAcopUmMbl noMewaromes 6 He Ooaee, Hem
10—15 komano. Xoms, ecau yuumoieams HaAllOeHHble 2eHbl, 00Was OAUHA NpOpaAMMbL Oydem cyujecmeeHHo boavuie.
Kpome moeo, mexanuzm ecmpausanus "2eno8" yice paxmuuecku ecmo 8 s3vlKe.

Haw memod nacmpoen Ha pabomy ¢ yeavbimu 4ucaamu, 00HAKO €20 MOJNCHO NPUMEHUMb U K OAGHHbIM, CO0epICaAuUM
deticmeumenvHbie HUcAd, cMpPoKU u m. 0. B cayuae pabomst ¢ deticmeumenbHbiMU YUCAAMU MeMOO MOICHO pACCMAMPU-
6amb KAK aAbMepHaAmuey mMemooam, NPUMEeHAeMbIM @ HeUPOHHbIX CemAX.

Karoueeoie caosa: cenemuyeckuti anreopumm, AUHelIHoe 2eHemuyecKoe npoepammupoeanue, 360A0WUUOHHOE npo-

Inroduction

Our goal is to automatically obtain a program
in some programming language that implements an
algorithm, defined by a set of test’s elements. To
create such a program, we will use methods that
in some sense have analogies in biology, in genet-
ics. This approach is called "Genetic programming”
(GP) [2, 6]. In all known applications, the desired
algorithm is defined by a set of tests, for example,
for the sum of two squares we would have:

1,12
2, -1 5
0,4 16

In the early days of GP, the goal of GP was exact-
ly the construction of a program that implements a
given algorithm in the selected programming lan-
guage. In this paper we return to this original goal
and show that it can work effectively. Moreover, in
the classical textbooks [7, 8], it was emphasized that
the particular choice of a programming language is
not of importance, as all languages are equivalent
in power to the Turing machine.

In practice, this was not entirely true. The num-
ber of possible programs turned out to be too large
and was highly dependant on the choice of the pro-
gramming language. So generally speaking, the ap-
plication of GP for searching programs did not give
the results that they had hoped for at the beginning.

Significant achievements were obtained in the
case of tree-based genetic programming, that is,
when the program is presented in the form of a
tree of calculations. However, in this case the ob-
tained algorithms are much more complicated than
we wish them to be. The classical example which is
frequently used in textbooks and articles considers
a program that implements computation x — X2+
+x+lorevenx >0+ X+ + 3+ X2+ x+1
[9, 17, 20, 25]. These GP obtained programs have

no cycles. In this direction, there is an interesting
work [18]. Authors managed to find programs that
implement the following functions:

. nguer11:x—>x3 + x4+ x+1,

. nguen2:x—>x4+x3+x2+x+ 1,

. nguen3:x—>x5+x4+x3+x2+x+ 1,

. nguen4:x—>x6+x5+x4+x3+x2+x+ 1,

e keijzerd: x — x3e_xcos(x)(sinz(x)cos(x) -1,

and several other functions of this kind.

Genetic methods yielded great results in ap-
proximating real-valued functions. Here GP me-
thods can compete with neural networks and even
interlock with them. For example, in [26] typical
10 regression problems for neural networks are
solved using GP methods.

In [12, 15], the concept of Recurrent Carte-
sian Genetic Programming (RCGP) is introduced,
in which the calculation graph can contain cycles.
As a result, the authors managed to implement the
functions n — n(2n — 1), n - 1 + n@n + 1)/2,
n — n(n®> + 1)/2, and finally, even the Fibonacci
numbers. However, this is not a real replacement for
full-cycle operators.

In [13], 29 tasks were proposed for testing ge-
netic programming research. Most of them require
working with real numbers, strings, arrays, with
displaying information on the screen. Some of these
tasks can be also handled by our approach if we
leave the result in the stack instead of its output
onto the screen.

The approach closest to ours is Linear Genetic
Programming (LGP) method [6, 11, 17, 20, 23, 24].
In this method, the program is represented as a
sequence of instructions from imperative program-
ming language. Their typical set consists of 4 arith-
metic operations (two arguments) and a number of
mathematical functions, for example exp, sin, sqrt,
etc. Practically all considered systems receive algo-
rithms without cycles.

In [14] C++ is used. However, here the primary
goal is the (minor) correction of already created (by
students) programs.

MH®OPMALIMOHHbIE TEXHOJNOI MU, Tom 26, Ne 1, 2020



In [10] describes automatic creation of the sim-
plest program in the language Haskell. Again there
are no cycles in the examples, even though there are
calls to functions that work with arrays as a whole.

In [21] several GP methods are benchmarked on
the 29 tasks from [13].

In the book [16] methods of GP in Python are
considered. Here, more than a dozen different prob-
lems are solved by GP methods. The main difficulty
in them is not the genetic algorithms themselves,
but the suitable reformulation of the problem. Af-
ter that, the problem can be solved by the genetic
method, or directly.

The widely distributed machine learning package
"TensorFlow" [3] also contains some tools for genetic
programming. See more on this in, e.g., [19].

In fact, in almost all cases, the considered ge-
netic methods are reduced to finding the minimum
of certain loss function from some, possibly, quite a
considerable number of parameters.

All these approaches takes us far away from the
original idea of GP. In the this paper we instead
stay within the framework of the originally for-
mulated task. Algorithms are assumed to be quite
complex, including conditional operators and cy-
cles. Obviously, for a linear representation of the
program one needs some version of the bytecode.
Another problem is the method of accessing vari-
ables. In our opinion, one of the most compact way
is the data stack. Programming language Forth lan-
guage satisfies these conditions. Functions in Forth
take all the arguments from the data stack and also
leave the results of calculations there. In this paper,
we restrict ourselves to the minimum possible set
of tools: we don’t use real numbers, strings, only
4-byte integers, we do not use variables, arrays,
only data in the stack. Thus, we reduce Forth to
a minimal subset of tools (only 32-bit integers, only
stack, no registers, no variables), which allow us
to solve quite complicated tasks, like GCD, bino-
mial coefficient, primality testing, and so on. In
the future, we would like to introduce other data
types: real numbers, strings, etc. In addition, from
the rather exotic language Forth, we would like to
switch to some more common language (C, Java,
etc.) or to an assembly language.

The key idea is to use partial programs, that is,
programs that do not pass all tests, but only a part
of them. We assume that fragments of such pro-
grams will be contained in the general program. We
will use these fragments as "genes".

Opverfitting. When training neural networks, the
problem of overfitting often arises. In our case, this
means that the program will work correctly only on
the input data that are available in the test. This

means that the program implements a tabular algo-
rithm. This problem is completely eliminated in the
present work as we introduce a limit on the length
of the program. It is sufficient to require that the
length of the program does not exceed the number
of test elements.

Structure of the work. In section 1, we define
the concept of a test and a test element. Section 2
contains a brief description of the version of Forth
that we use. In section 3 we describe the methods
that are used to find the Forth-realization, section 4
describes our results.

1. Problem definition

We want to find a program in some program-
ming language implementing given algorithm. The
algorithm will be defined as a set of tests:

(input _data) — (output data).

The unit of the test is the pair # = (x, y), where
(xe X,y e Y),and X, Yare the corresponding sets
of input and output objects. In this paper we con-
sider as input and output objects as a sequences of
32-bit integers of fixes length.

Test files. A "test" is an arbitrary finite set of test
items. Sometimes, when there are no confusion, we
call a single test element a test. In practice, the test
is represented by a text file of the form:

#T SHIFTR 0 x,y —-> x*2"y comment
<in> 9 3 </in><out> 1536 </out>
<in> 4 3 </in><out> 48 </out>
<in> 2 7 </in><out> 28 </out>

Definition 1. Pair (m, n), where m is a number of
input integers and n is a number of output integers
is called the signature of the test element.

Remark 1. In general, it is allowed to have test
elements with different signatures in one test. But
this possibility is not used in the present work.

The number of test items in each test varies from
a several to hundreds.

A large set of test files is freely available on our
website [1]. Not for all of them our GP method was
able to find implementing programs. The tests on
the website are grouped by sections: polynomials,
max/min, sorting, GCD, LCM, factorials, number
theory, decimal and binary digits and so on.

2. Programming language

From our point of view all programs are divided
into two types: linear (with goto) and structural.

MHPOPMALIMOHHbIE TEXHONOTI U, Tom 26, Ne 1, 2020



The advantages and disadvantages of each type are
quite obvious and there is no fundamental differ-
ence between them from our point of view. We have
chosen a linear approach in our work (at least for
this initial stage). Usually, this is done by selecting
an assembly-type instruction set (registers). In the
present work the stack approach (already imple-
mented in the language of Forth [4, 5]) is deemed
to be more effective. To find the program with the
genetic method, the most stripped-down version of
the Forth was chosen. Only those instructions are
left, which are impossible to do without. There is
no interaction with the user, such as output to the
screen, and even variables are missing. The control
structures are represented only by unconditional
and conditional jump-instruction. Forth is very
compact, new words (functions) are introduced very
easily. The newly defined functions have exactly the
same syntax as the built-in language elements. This
is convenient for a genetic approach. Thanks to this,
one does not need to go through programs with
complex structure in the form of a tree, only the
simplest ones.

An example of a program that calculates the sum
of the squares of two numbers and the factorial:

SUMSQ2 DUP * SWAP DUP * +;
FACTORIAL CONST 1 OVER --
OVER IF -6 SWAP DROP;

-ROT ~*

All programs and functions in Forth work with
the data stack. Only 4-byte integers are stored on
the stack. The functions have no explicit arguments.
The input data that they take is from the stack and
they leave the results of their work in the same place.

The number of such implicit arguments can vary,
depending on the state of the stack. Such a signa-
ture will be called "floating". For now, we will only
consider functions with a fixed, static signature.
At each point of such a program, the current stack
depth is statically determined.

Everywhere below, functions will be called
"words", or "genes". At each moment, the system
has a certain set of built-in words (functions) and
the current set of new genes, that is, new words
built in the learning process ("evolution"). One step
of evolution is the construction of one or more new
words (functions) that solve one problem (test) in
whole or in part.

Bytecode. The program in Forth is a byte se-
quence, each byte is a separate command. There are
two types of commands: built-in and implemented
on Forth itself. Thus, the total number of com-
mands cannot be more than 255.

In our version of Forth there are 33 built-in
commands: unconditional (GOTO) and conditional

(IF) jump, numeric literal (CONST), stack manipula-
tion commands (DUP DROP SWAP OVER ROT —
ROT 2PICK 3PICK 4PICK 3ROLL 4ROLL), arith-
metic (NEGATE +— * / % /% ++ — —), bit com-
mands (AND OR XOR NOT), logical (comparison)
> <=0=0>0>).

In addition to the built-in commands, the system
may contain commands implemented on Forth it-
self, for example, finding the sum of squares of two
elements at the stack:

SUMSQ2 DUP * SWAP DUP * +;

The colon at the beginning of the command is
a sign of the beginning of a new word. The name
of the function follows. The semicolon at the end is
a sign of the end of the word (function, program).
The name of a function can be an arbitrary string of
characters that does not contain spaces, tabs to the
end of the line. Individual words are separated by
spaces or tabs or line ends. An important advantage
of Forth is that it is not required to develop a mech-
anism for "embedding genes", as it is already exist
in the language. New words (procedures, functions,
"genes") are used in exactly the same way as built-
in ones. The current list of words (the dictionary)
under biological interpretation will be considered as
a "genome”.

3. General algorithm

At first, let’s just try to iterate through all the
programs to a given length.

Working time. Having 33 basic words, we get
~10° programs of length 6.

If we check about 10 million programs per se-
cond (one core, frequency ~3 GHz), then a full
search will take about a minute. In an hour, you
can go through all the programs of length 7. The
search of all programs of length 8 requires more
than a day. For an 8-core processor, it is realistic
to check programs of length 9. Finding longer pro-
grams requires more complex methods.

A base step with parameters (Ly, L, 7) in a
fixed dictionary is the following algorithm.

1. A full search of programs up to length <L,.
Then build a list of partial programs (that is, pro-
grams that do not perform all tests, but only some
of them).

2. Using the partial programs, build a list of word
frequencies and a list of frequencies of word pairs.

3. Check random programs of length L, + 1...L,
within a specified interval of time 7 seconds.

4. Correct the frequency tables and repeat step 3,
this cycle is performed K (usually 8) times.

MH®OPMALIMOHHbIE TEXHOJNOI MU, Tom 26, Ne 1, 2020



The typical values of the parameters for working
on one processor core is (7, 14, 400), that is, first
perform a full search of programs of length <7,
then 8 times for 50 seconds is performed alternately
probabilistic/Markov search of programs of length
from 8 to 14 with correction of the frequency table
after each cycle.

Genes. As already mentioned, the list of words in
the dictionary plays the role of "genome". Each gene
added can be either "good", "useful”, or "unsuccess-
ful”, "useless". The quality of the function-gene itself
cannot be determined, only as part of the genome,
aimed at solving a specific problem. Therefore, we
introduce a definition of genome (dictionary) qua-
lity in relation to this set of tests. If the new gene
improves the quality, we will consider it a good one.
As the "candidates for genes" we will take the most
frequent chains of bytes of length 2 or 3 among par-
tial programs. During the process we will have two
lists of programs (genes): "candidates for genes", and
"unsuccessful genes". There should be no duplicate
elements in them.

1. Find a list of valid words. Upon completion
of the search, we get, besides this list, also a list of
partial programs.

2. Clear the list "candidates for the genes" and
"bad genes".

3. In the lists of "candidates for genes" add the
most frequent chains of length 2, 3, and only those
that are not in the list of "unsuccessful genes".

4. If there are no candidates for genes, we finish
the job.

5. Add one of the candidates to the dictionary.

6. Perform a basic step with this genome, find
its quality.

7. If the gene was unsuccessful, remove it from the
dictionary and add it to the list of "unsuccessful genes".

8. Goto step 3.

4. Results

Here is a list of algorithms that have been imple-
mented.

By brute force and probabilistic method. Squar-
ing, odd, even, abs, sign, sum of two squares, max/
min of two or three numbers, sorting of two num-
bers, GCD in special case (x,y>1), factorial (x>1),
left/right shift in k>0 bits, minimal natural divider
in special case (x>1). Decimal/hex/binary digits:
lower, high.

Squaring:: SQUARE DUP *;
Multiply by 2: MUL2 DUP +;
Test odd: ODD CONST 1 AND;

Signum: SIGN DUP O = IF 6 0> DUP IF 2 —-;
Sum of suares: SUMSQ2 DUP * SWAP DUP * +;
Absolute value: ABS DUP 0> IF 2 NEG;
Descending sort of 2 numbers:

SORT2R OVER OVER > IF 2 SWAP;
Ascending sort of 2 numbers:

SORT2 DUP 2PICK > IF 2 SWAP;
Maximum of 2 numbers:

MAX2 OVER OVER > IF 2 SWAP DROP;
Minimum of 2 numbers:

MIN2 DUP 0> IF 2 SWAP IF 2 ROT;
Maximum of 3 numbers:

MAX3 OVER 3ROLL > IF 2 SWAP DROP;
Minimum of 3 numbers:

MIN3 ROT 2PICK 0> IF -4 DROP DROP;
Polynomials:
(a,b,x) - bx + a: polyl * +;
(a,b,c,x) = cx> + bx + a:

poly2 -ROT 2PICK * + * +;

X — 2x-3: poll 1 -- DUP + --;
X—>-3x+4: poll 2 -- CONST -3 * + +;

X —> x-1: poll 3 --;

X — 2x-1: poll 4 DUP + --;

x— 10x-3: poll 5 CONST 10 * -- -- --;
x->1lx+7: poll 6 CONST 11 * CONST 7 +;
X — 2x%: pol2 1 DUP OVER + *;

X = -3x> + x: pol2 2 DUP CONST -3 * + + *;
X >x>2x+1: pol2 3 —- DUP *;

(,b,0) > b*-dac: discr OVER ROT *
-ROT * CONST 4 * —-;

Digits:

Lower digit: digit0 CONST 10 %;

Next digit: digitl CONST 10 / CONST 10 $%;
Hundreds: digit2 CONST 10 DUP * / CONST 10 %;

The highest digit:digitH DUP C10 / DUP -ROT
IF -5 SWAP DROP;

Using genes. Using the constructed algorithms as
"genes”, we managed to find the following algorithms.

Sum of three squares, sorting/mid of three num-
bers, GCD in general case (arbitrary x,y), factorial
(arbitrary x), left/right shift, minimal natural divider
in general case (arbitrary x). Arbitrary decimal/hex/
binary digits. The average of the three numbers. Bi-
nomial coefficients.

Here are, for example, some of these programs.

Right shift: (n,x) — 2" x (only for n>0)

: DUP + SWAP -- DUP -ROT IF -7 +;

Digit K: (K, x) — (x/105) % 10
digitK DUP IF 4 SWAP C10 / OVER --
ROT IF -7 DROP C10 %;

GCD(x,y)
GCD 0 DUP -ROT % DUP IF -5 -;
GCD 1 OVER ROT IF 3 GOTO -5 GCD _ 0;
GCD ABS SWAP ABS GCD _1;

MHPOPMALIMOHHbIE TEXHONOTI U, Tom 26, Ne 1, 2020



or, without genes:

: GCD ABS SWAP ABS OVER ROT
IF 3 GOTO -5 DUP -ROT % DUP
IF -5 -;
FACTORIAL CONST 1 OVER -- -ROT *
OVER IF -6 SWAP DROP;
BINOM DUP 2PICK — SWAP FACTORIAL
SWAP FACTORIAL / SWAP FACTORIAL /;

Programs are given in full, with already built-in
genes.

An exe-file that implements the algorithms
described in the work can be obtained on our
website [1]. A detailed description of the program
is available in our text in arxiv.org [26] (this text
contains a very detailed description of our programs
which we removed from the present paper for the
purpose of conciseness).

Conclusion

The proposed GP method allows to obtain pro-
grams that implement quite complex algorithms:
factorial, binomial coefficients, search for a prime
divider, etc. The achieved level of program com-
plexity significantly exceeds that obtained by other
methods. However, there are still many algorithms
that cannot be implemented. For example, the fin-
ding of Fibonacci numbers is not yet obtained with-
out "prompts"”, that is, without additional genes.

Based on the analysis of the obtained results, it
is possible to build more advanced methods that can
enable the implementation of even more complex
algorithms.

References

1. Gen_03.exe, available at: http://math.ivanovo.ac.ru/dalge-
bra/Khashin/gene/gen_03r.htm (date:04.06.2018).

2. genetic-programming.com, available at: http://www.gene-
tic-programming.com/ (date:04.06.2018).

3. TensorFlow: An open source machine learning frame-
work for everyone, available at: https://www.tensorflow.org/
(date:04.06.2018).

4. Thinking Forth Project, available at: http://thinking-forth.
sourceforge.net/ (date:30.06.2018).

5. Wikipedia: Forth, available at: URL:https://en.wikipedia.
org/wiki/Forth_programming_language \\(date:30.06.2018).

6. Wikipedia: LGP Linear genetic programming, available
at: https://en.wikipedia.org/wiki/Linear_genetic_programming \\
(date:04.06.2018).

7. Koza, J. R. Genetic programming as a means for pro-
gramming computers by natural selection, Stat Comput., 1994,
vol. 4(2), pp. 87—112, doi:10.1007/BF00175355.

8. Banzhaf W., Nordin P., Keller R. E., Francone F. Genetic
Programming — An Introduction; On the Automatic Evolution of
Computer Programs and its Applications, M., Kaufmann Publ. Inc.
CA, USA, 1998, 480 p.

9. Panchenko T. V. Genetic algorithms, Astrakhan Univ.
publ., 2007, 87 p.

10.Katayama S. MagicHaskeller on the Web: Automated
Programming as a Service, In Haskell ’13: Proceedings of the 2013
ACM SIGPLAN Symposium on Haskell. ACM.

11. Francoso L., Sotto D. P., de Melo V. V. Comparison
of linear genetic programming variants for symbolic regression,
GECCO’I4. Proc. 2014 Annual Conference on Genetic and Evolu-
tionary Computation, doi: 10.1145/2598394.2598472.

12. Turner A. J., Miller J. F. Recurrent Cartesian genetic pro-
gramming applied to famous mathematical sequences, Proceedings
of the 7th York Doctoral ymposium on Computer Science& Electronics,
2014, cs.york.ac.uk, pp. 37—47.

13. Helmuth T., Spector L. General Program Synthesis
Benchmark Suite, GECCO’15. Proc. 2015 Annual Conference on
Genetic and Evolutionary Computation, p. 1039—1046.

14. Yalin K., Stolee Kathryn T., Le C., Brun Y. Repairing
Programs with Semantic Code Search., ASE’l5, Proceedings of the
2015 30th IEEE/ACM Int. Conf. on Automated Software Enginee-
ring (ASE), pp. 295—306, doi: 10.1109/ASE.2015.60.

15. Turner A. J., Miller J. F. Neutral genetic drift: an inves-
tigation using Cartesian Genetic Programming, Genet Program
Evolvable Mach (2015), doi:10.1007/s10710-015-9244-6.

16. Sheppard C. Genetic Algorithms with Python, 2016, 282 p.

17. Chen Q., Xue B., Shang L., Zhang M. Generalisation
of Genetic Programming for Symbolic Regression with Struc-
tural Risk Minimisation, GECCO ‘16 Proceedings of the Ge-
netic and Evolutionary Computation Conference 2016 P. 709—716,
doi:10.1145/2908812. 2908842.

18. Sotto L. F. D. P., Melo V. V. A Probabilistic Linear Ge-
netic Programming with Stochastic Context-Free Grammar for
solving Symbolic Regression problems, arXiv:1704.00828 [cs.NE].

19. Staats K., Pantridge E., Cavaglia M., Milovanov 1., Aniyan A.
TensorFlow Enabled Genetic Programming, arXiv:1708.03157 [cs.DC]

Simson J. Open-Source Linear Genetic Programming, Ph.D.
thesis, Waikato, New Zealand.

21. Pantridge Helmuth T., McPhee N., Spector L. On the
Diffculty of Benchmarking Inductive Program Synthesis Methods,
In Proceedings of GECCO ‘17 Companion, Berlin, Germany, July
15—19, 2017, 8 p., doi:10.1145/3067695.3082533.

22. Thi T. P., Nguyen X. H., Nguyen T. T. A Study on Fitness
Representation in Genetic Programming, CTA 2016. Advances
in Intelligent Systems and Computing, vol 538, Springer, Cham,
doi:10.1007/978-3-319-49073-113.

23. Milano N., Nolfi S. Scaling Up Cartesian Genetic Pro-
gramming through Preferential Selection of Larger Solutions,
arXiv:1810.09485 [cs.NE].

24. Wilson D. G., Miller J. F., Cussat-Blanc S., Luga H. Po-
sitional Cartesian Genetic Programming, arXiv:1810.09485 |cs.NE].

25. Virgolin M., Alderliesten T., Witteveen C., Bosman P.
A Model-based Genetic Programming Approach for Symbolic
Regression of Small Expressions, arXiv:1904.02050 [cs.NE] (sub-
mitted for peer review to IEEE Transactions on Evolutionary
Computation).

26. Khashin S. I., Vaganov S. E., Genetic algorithms in
Forth, arXiv: 1807.06230 |[math.NT].

MH®OPMALIMOHHbIE TEXHOJNOI MU, Tom 26, Ne 1, 2020



